With the gradual deployment of 5G and the continuous popularization of edge intelligence (EI), the explosive growth of data on the edge of the network has promoted the rapid development of 6G and ubiquitous intelligence (UbiI). This article aims to explore a new method for modeling latency guarantees for UbiI in 6G given 6G's extremely stochastic nature in terahertz (THz) environments, THz channel tail behavior, and delay distribution tail characteristics generated by the UBiI random component, and to find the optimal solution that minimizes the end-to-end (E2E) delay of UbiI. In this article, the arrival curve and service curve of network calculus can well characterize the stochastic nature of wireless channels, the tail behavior of wireless systems and the E2E service curve of network calculus can model the tail characteristic of the delay distribution in UbiI. Specifically, we first propose demands and challenges facing 6G, edge computing (EC), edge deep learning (DL), and UbiI. Then, we propose the hierarchical architecture, the network model, and the service delay model of the UbiI system based on network calculus. In addition, two case studies demonstrate the usefulness and effectiveness of the network calculus approach in analyzing and modeling the latency guarantee for UbiI in 6G. Finally, future open research issues regarding the latency guarantee for UbiI in 6G are outlined.
翻译:随着5G的逐步部署和UBI随机部分产生的边缘情报的不断普及,网络边缘数据爆炸性增长促进了6G和无处不在的情报的迅速发展。 文章旨在探索一种新的方法,以6G为UBI在6G中的延迟保证模范,因为6G在Thahertz(Thz)环境中极具随机性,Thz频道尾部行为,以及UBI随机部分产生的延缓分配尾巴特性,以及找到最佳解决办法,最大限度地减少UBI的端对端延迟(E2E)。 在本篇文章中,网络评分的到达曲线和服务曲线可以很好地说明无线频道的随机性质,无线系统的尾部行为和网络积分的E2E服务曲线可以模拟UBI的延迟分布。 具体地说,我们首先提出了6G、边缘计算(EC)、边缘深度学习(DL)和UBI的最佳解决办法。 然后,我们在6BI的等级结构、网络的抵达曲线曲线曲线曲线曲线和服务曲线上提出了基于6GLI的模型的网络的延迟研究。