This paper introduces a novel quantile approach to harness the high-frequency information and improve the daily conditional quantile estimation. Specifically, we model the conditional standard deviation as a realized GARCH model and employ conditional standard deviation, realized volatility, realized quantile, and absolute overnight return as innovations in the proposed dynamic quantile models. We devise a two-step estimation procedure to estimate the conditional quantile parameters. The first step applies a quasi-maximum likelihood estimation procedure, with the realized volatility as a proxy for the volatility proxy, to estimate the conditional standard deviation parameters. The second step utilizes a quantile regression estimation procedure with the estimated conditional standard deviation in the first step. Asymptotic theory is established for the proposed estimation methods, and a simulation study is conducted to check their finite-sample performance. Finally, we apply the proposed methodology to calculate the value at risk (VaR) of 20 individual assets and compare its performance with existing competitors.
翻译:本文介绍了一种创新的量化方法,以利用高频信息和改进每日有条件的量化估计。 具体地说,我们将有条件的标准偏差作为已实现的GARCH模型进行模型化,并采用有条件的标准偏差、已实现的波动性、已实现的四分位数和绝对的隔夜回报作为拟议动态量化模型的创新。我们设计了一个两步估计程序来估计有条件的量化参数。第一步是采用一个准最大概率估计程序,以已实现的波动作为波动替代,来估计有条件的标准偏差参数。第二步是在第一步使用量化的回归估计程序,并使用估计的有条件标准偏差。为拟议的估算方法确立了一个假设理论,并进行了模拟研究,以检查其有限抽样性能。 最后,我们运用了拟议方法来计算20个个体资产的风险价值(VaR),并将其业绩与现有竞争者进行比较。