We present a decomposition approach for obtaining good feasible solutions for the security-constrained alternating-current optimal power flow (SCACOPF) problem at an industrial scale and under real-world time and computational limits. The approach aims at complementing the existing body of literature on bounding the problem via convex relaxations. It was designed for the participation in ARPA-E's Grid Optimization (GO) Competition Challenge 1. The challenge focused on a near-real-time version of the SCACOPF problem where a base case operating point is optimized taking into account possible single-element contingencies, after which the system adapts its operating point following the response of automatic frequency drop controllers and voltage regulators. Our solution approach for this problem relies on state-of-the-art nonlinear programming algorithms and employs nonconvex relaxations for complementarity constraints, a specialized two-stage decomposition technique with sparse approximations of recourse terms, and contingency ranking and pre-screening. The paper also outlines the salient features of our implementation, such as fast model functions and derivatives evaluation, warm-starting strategies, and asynchronous parallelism. We discuss the results of the independent benchmark of our approach done by ARPA-E's GO team in Challenge 1, which found that our methodology consistently produces high quality solutions across a wide range of network sizes and difficulty. Finally, we conclude by outlining potential extensions and improvements of our methodology.


翻译:1. 我们提出了一个分解方法,以便在工业规模和现实世界时间和计算限度下,为安全受限制的交替最佳电力流动问题找到可行的妥善解决办法,在工业规模和现实世界时间和计算限度下,在工业规模和现实世界时间和电压调控器的响应下,为获得安全受限制的最佳电流问题找到可行的可行解决办法; 这种方法旨在补充关于通过Convex放松将问题捆绑起来的现有文献; 旨在参与ARPA-E网最佳化(GO)竞争挑战1 。 挑战侧重于SCCOPF问题的近实时版本,即考虑到可能的单一因素意外事件,使一个基本案件运行点得到优化,之后,系统在自动频率降压控制器和电压调控器的响应下,调整其运作点。 我们解决这一问题的方法依靠最新的非线性非线性编程编程算算法,利用零星两阶段专用的分解配置技术,在追索条件、应急分级和预检中进行优化。 文件还概述了我们执行工作的突出特点,例如快速模型功能和衍生物评估,启动战略,以及不断调整的AR-A系统升级的升级方法,我们通过平行的升级方法,在最后制定一个核心的升级方法中,从而得出了我们最终的升级的方法。

0
下载
关闭预览

相关内容

专知会员服务
28+阅读 · 2021年8月2日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
7+阅读 · 2020年6月29日
Arxiv
24+阅读 · 2020年3月11日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员