In a future with autonomous robots, visual and spatial perception is of utmost importance for robotic systems. Particularly for aerial robotics, there are many applications where utilizing visual perception is necessary for any real-world scenarios. Robotic aerial grasping using drones promises fast pick-and-place solutions with a large increase in mobility over other robotic solutions. Utilizing Mask R-CNN scene segmentation (detectron2), we propose a vision-based system for autonomous rapid aerial grasping which does not rely on markers for object localization and does not require the size of the object to be previously known. With spatial information from a depth camera, we generate a point cloud of the detected objects and perform geometry-based grasp planning to determine grasping points on the objects. In real-world experiments, we show that our system can localize objects with a mean error of 3 cm compared to a motion capture ground truth for distances from the object ranging from 0.5 m to 2.5 m. Similar grasping efficacy is maintained compared to a system using motion capture for object localization in experiments. With our results, we show the first use of geometry-based grasping techniques with a flying platform and aim to increase the autonomy of existing aerial manipulation platforms, bringing them further towards real-world applications in warehouses and similar environments.
翻译:在机器人自主机器人、视觉和空间认知的未来,对机器人系统至关重要。特别是对于空中机器人而言,有许多应用应用软件,对任何现实世界的情景都有必要使用视觉认知。使用无人机进行机器人空中捕捉,意味着快速选取和定位解决方案,大大增强相对于其他机器人解决方案的机动性。我们建议使用蒙面 R-CNN 场点分割(Detectron2) 的基于愿景的自动快速空中捕捉系统,该系统不依赖天体定位的标记,也不要求先知天体大小。通过深度摄像头提供的空间信息,我们生成了被探测天体的点云,并进行了基于几何学的掌握计划,以确定天体上的定位点。在现实世界实验中,我们显示我们的系统可以将天体定位为平均误差3厘米,而从天体距离0.5米到2.5米的移动捕捉地真。与在实验中使用物体定位的动作捕捉系统相比,也保持了类似的捕捉力。我们通过深度摄像机拍摄的结果,我们展示了首次使用基于几何定位技术,在飞行平台上进一步掌握天体定位技术,目的是增加现有航空平台的自主。