A classical branch of graph algorithms is graph transversals, where one seeks a minimum-weight subset of nodes in a node-weighted graph $G$ which intersects all copies of subgraphs~$F$ from a fixed family $\mathcal F$. Many such graph transversal problems have been shown to admit polynomial-time approximation schemes (PTAS) for planar input graphs $G$, using a variety of techniques like the shifting technique (Baker, J. ACM 1994), bidimensionality (Fomin et al., SODA 2011), or connectivity domination (Cohen-Addad et al., STOC 2016). These techniques do not seem to apply to graph transversals with parity constraints, which have recently received significant attention, but for which no PTASs are known. In the even-cycle transversal (\ECT) problem, the goal is to find a minimum-weight hitting set for the set of even cycles in an undirected graph. For ECT, Fiorini et al. (IPCO 2010) showed that the integrality gap of the standard covering LP relaxation is $\Theta(\log n)$, and that adding sparsity inequalities reduces the integrality gap to~10. Our main result is a primal-dual algorithm that yields a $47/7\approx6.71$-approximation for ECT on node-weighted planar graphs, and an integrality gap of the same value for the standard LP relaxation on node-weighted planar graphs.


翻译:古典的图形算法分支是图形横贯, 在其中, 人们在节点加权的图形中寻找一个最小重量节点子子子集, 以美元G$为单位, 将所有子谱的份数相互交叉, 从固定的家族$\ mathcal F$ 中切换到 F$。 许多这样的图形横跨问题被显示为接受用于平面输入图的多球时近似方案( PTAS ) $G$。 在平面转动技术( Baker, J. ACM 1994) 、 双维度( Fomn 等人, SODA ) 或连接支配( Cohen- Addad 等人, STOC 2016) 。 这些技术似乎并不适用于具有等值限制的图形横过半。 在平面输入图( PTASS) 中, 目标在于利用各种技术, 例如移动技术( Baker, J. Fiorini 等人) 或连接连接控制( IP CO) 显示, 平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面图。

0
下载
关闭预览

相关内容

自然语言处理顶会COLING2020最佳论文出炉!
专知会员服务
23+阅读 · 2020年12月12日
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
88+阅读 · 2020年12月2日
专知会员服务
60+阅读 · 2020年3月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员