Stochastic local search (SLS) is a successful paradigm for solving the satisfiability problem of propositional logic. A recent development in this area involves solving not the original instance, but a modified, yet logically equivalent one. Empirically, this technique was found to be promising as it improves the performance of state-of-the-art SLS solvers. Currently, there is only a shallow understanding of how this modification technique affects the runtimes of SLS solvers. Thus, we model this modification process and conduct an empirical analysis of the hardness of logically equivalent formulas. Our results are twofold. First, if the modification process is treated as a random process, a lognormal distribution perfectly characterizes the hardness; implying that the hardness is long-tailed. This means that the modification technique can be further improved by implementing an additional restart mechanism. Thus, as a second contribution, we theoretically prove that all algorithms exhibiting this long-tail property can be further improved by restarts. Consequently, all SAT solvers employing this modification technique can be enhanced.


翻译:本地斯托切搜索( SLS) 是解决命题逻辑的可比较性问题的成功范例。 该领域最近的一项发展涉及的不是解决原始实例, 而是解决一个经过修改的、但逻辑上对等的原始实例。 生动地, 这一技术被认为很有希望, 因为它能改善最先进的 SLS 解答器的性能。 目前, 对这一修改技术如何影响 SLS 解答器的运行时间只有浅薄的理解。 因此, 我们模拟了这一修改过程, 并对逻辑上等同的公式的硬性进行了实验性分析。 我们的结果是双重的。 首先, 如果将修改过程作为随机过程处理, 逻辑上正常的分布可以完全描述硬性; 意味着硬性是长的。 这意味着通过实施额外的重新启动机制可以进一步改进修改技术。 因此, 作为第二个贡献, 我们理论上证明, 显示这种长尾的属性的所有算法可以通过重新启动来进一步改进。 因此, 使用这种修改技术的所有 SAT 解答器都可以得到加强 。

0
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
43+阅读 · 2020年9月25日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
将门创投
3+阅读 · 2018年10月11日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年9月3日
Arxiv
9+阅读 · 2021年6月16日
Metrics for Explainable AI: Challenges and Prospects
Arxiv
4+阅读 · 2018年12月11日
Arxiv
6+阅读 · 2018年3月28日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
43+阅读 · 2020年9月25日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
将门创投
3+阅读 · 2018年10月11日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员