Finding shape correspondences can be formulated as an NP-hard quadratic assignment problem (QAP) that becomes infeasible for shapes with high sampling density. A promising research direction is to tackle such quadratic optimization problems over binary variables with quantum annealing, which, in theory, allows to find globally optimal solutions relying on a new computational paradigm. Unfortunately, enforcing the linear equality constraints in QAPs via a penalty significantly limits the success probability of such methods on currently available quantum hardware. To address this limitation, this paper proposes Q-Match, i.e., a new iterative quantum method for QAPs inspired by the alpha-expansion algorithm, which allows solving problems of an order of magnitude larger than current quantum methods. It works by implicitly enforcing the QAP constraints by updating the current estimates in a cyclic fashion. Further, Q-Match can be applied for shape matching problems iteratively, on a subset of well-chosen correspondences, allowing us to scale to real-world problems. Using the latest quantum annealer, the D-Wave Advantage, we evaluate the proposed method on a subset of QAPLIB as well as on isometric shape matching problems from the FAUST dataset.
翻译:查找形状的对应信息可以被设计成NP- 硬二次分配问题( QAP), 这对于取样密度高的形状来说是行不通的。 一个很有希望的研究方向是解决量子射线比二进制变量的二次优化问题, 从理论上讲,这允许根据新的计算模式找到全球最佳解决方案。 不幸的是, 通过惩罚在QAP中执行线性平等限制, 大大限制了目前可用量子硬件上这类方法的成功概率。 为解决这一限制, 本文建议了QMatch, 即由阿尔法扩展算法启发的QAP 新的迭接量法, 它可以解决比当前量子计算法更大的数量级变数问题。 它通过以循环方式更新当前估算值来暗中执行QAP的限制。 此外, QMatch可以应用于反复匹配问题, 在一个精密的通信子集上, 允许我们将问题缩放到现实世界。 使用最新的量衡算器, D- Wave Advantage 算法, 我们从ABAL 的形状上对AAAS 进行匹配。