We propose and study Th-QAOA (pronounced Threshold QAOA), a variation of the Quantum Alternating Operator Ansatz (QAOA) that replaces the standard phase separator operator, which encodes the objective function, with a threshold function that returns a value $1$ for solutions with an objective value above the threshold and a $0$ otherwise. We vary the threshold value to arrive at a quantum optimization algorithm. We focus on a combination with the Grover Mixer operator; the resulting GM-Th-QAOA can be viewed as a generalization of Grover's quantum search algorithm and its minimum/maximum finding cousin to approximate optimization. Our main findings include: (i) we show semi-formally that the optimum parameter values of GM-Th-QAOA (angles and threshold value) can be found with $O(\log(p) \times \log M)$ iterations of the classical outer loop, where $p$ is the number of QAOA rounds and $M$ is an upper bound on the solution value (often the number of vertices or edges in an input graph), thus eliminating the notorious outer-loop parameter finding issue of other QAOA algorithms; (ii) GM-Th-QAOA can be simulated classically with little effort up to 100 qubits through a set of tricks that cut down memory requirements; (iii) somewhat surprisingly, GM-Th-QAOA outperforms its non-thresholded counterparts in terms of approximation ratios achieved. This third result holds across a range of optimization problems (MaxCut, Max k-VertexCover, Max k-DensestSubgraph, MaxBisection) and various experimental design parameters, such as different input edge densities and constraint sizes.
翻译:我们提议并研究T- QAOA( 宣布阈值 QAOA), QQaltum Alternated Anser Ansatz (QAOAA) 的变异, 取代标准阶段分隔器操作员, 该操作员对目标函数进行编码, 其起点函数返回值值为$, 其目标值高于阈值, 否则为 美元。 我们改变阈值, 以达到量量优化算法。 我们侧重于与 Grover klister 调控操作员的组合; 由此产生的 GM- Th- QAOA 的渐变变调算法可被视为Grover 量搜索算法的概略化算法, 其最小/ 最大发现表表表表表表表表表表表表表表表表表显示, GM- TH- QOOA( 角值) 的最佳参数值可以与 $O( plog) 数 和 经典外向外循环, 其中, 以美元为QA 回合和 QMILO 的平面值, 的平面值, 通过O 的数值, 的数值, 直观的数值, 质变数, 直径值, 直值, 直值, 直值为O 直值, 。