The ICH E9 addendum introduces the term intercurrent event to refer to events that happen after randomisation and that can either preclude observation of the outcome of interest or affect its interpretation. It proposes five strategies for handling intercurrent events to form an estimand but does not suggest statistical methods for estimation. In this paper we focus on the hypothetical strategy, where the treatment effect is defined under the hypothetical scenario in which the intercurrent event is prevented. For its estimation, we consider causal inference and missing data methods. We establish that certain 'causal inference estimators' are identical to certain 'missing data estimators'. These links may help those familiar with one set of methods but not the other. Moreover, using potential outcome notation allows us to state more clearly the assumptions on which missing data methods rely to estimate hypothetical estimands. This helps to indicate whether estimating a hypothetical estimand is reasonable, and what data should be used in the analysis. We show that hypothetical estimands can be estimated by exploiting data after intercurrent event occurrence, which is typically not used. We also present Monte Carlo simulations that illustrate the implementation and performance of the methods in different settings.


翻译:ICH E9 增编 介绍了 " ICH E9 " 假设事件,其中处理效果是在随机处理之后发生的,可能妨碍观察有关结果或影响对结果的解释的事件。它提出了处理中间事件的五项战略,以形成一个估计,但并不建议统计方法。在本文中,我们侧重于假设战略,即根据防止中间事件发生的假设假设情况界定处理效果;关于估计,我们考虑因果关系和缺失的数据方法。我们确定,某些 " 因果关系估计者 " 与某些 " 传播数据估计者 " 相同。这些联系可能有助于熟悉一套方法的人,而不是其他方法的人。此外,利用潜在结果说明使我们能够更清楚地说明哪些假设数据方法缺失,而哪些数据方法是用来估计假设估计假设估计的。这有助于说明假设估计是否合理,以及在分析中应使用哪些数据。我们表明,假设估计的估算方法可以通过在发生间事件之后利用数据来估计,而通常没有使用这些数据。我们还介绍了蒙特卡洛模拟了不同方法的实施和表现。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【2020新书】概率机器学习,附212页pdf与slides
专知会员服务
108+阅读 · 2020年11月12日
经济学中的数据科学,Data Science in Economics,附22页pdf
专知会员服务
35+阅读 · 2020年4月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Dyadic Clustering in International Relations
Arxiv
0+阅读 · 2021年9月8日
Causal Inference for Quantile Treatment Effects
Arxiv
0+阅读 · 2021年9月8日
Arxiv
0+阅读 · 2021年9月8日
Arxiv
110+阅读 · 2020年2月5日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【2020新书】概率机器学习,附212页pdf与slides
专知会员服务
108+阅读 · 2020年11月12日
经济学中的数据科学,Data Science in Economics,附22页pdf
专知会员服务
35+阅读 · 2020年4月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员