The ICH E9 addendum introduces the term intercurrent event to refer to events that happen after randomisation and that can either preclude observation of the outcome of interest or affect its interpretation. It proposes five strategies for handling intercurrent events to form an estimand but does not suggest statistical methods for estimation. In this paper we focus on the hypothetical strategy, where the treatment effect is defined under the hypothetical scenario in which the intercurrent event is prevented. For its estimation, we consider causal inference and missing data methods. We establish that certain 'causal inference estimators' are identical to certain 'missing data estimators'. These links may help those familiar with one set of methods but not the other. Moreover, using potential outcome notation allows us to state more clearly the assumptions on which missing data methods rely to estimate hypothetical estimands. This helps to indicate whether estimating a hypothetical estimand is reasonable, and what data should be used in the analysis. We show that hypothetical estimands can be estimated by exploiting data after intercurrent event occurrence, which is typically not used. We also present Monte Carlo simulations that illustrate the implementation and performance of the methods in different settings.
翻译:ICH E9 增编 介绍了 " ICH E9 " 假设事件,其中处理效果是在随机处理之后发生的,可能妨碍观察有关结果或影响对结果的解释的事件。它提出了处理中间事件的五项战略,以形成一个估计,但并不建议统计方法。在本文中,我们侧重于假设战略,即根据防止中间事件发生的假设假设情况界定处理效果;关于估计,我们考虑因果关系和缺失的数据方法。我们确定,某些 " 因果关系估计者 " 与某些 " 传播数据估计者 " 相同。这些联系可能有助于熟悉一套方法的人,而不是其他方法的人。此外,利用潜在结果说明使我们能够更清楚地说明哪些假设数据方法缺失,而哪些数据方法是用来估计假设估计假设估计的。这有助于说明假设估计是否合理,以及在分析中应使用哪些数据。我们表明,假设估计的估算方法可以通过在发生间事件之后利用数据来估计,而通常没有使用这些数据。我们还介绍了蒙特卡洛模拟了不同方法的实施和表现。