A smart healthcare system that supports clinicians for risk-calibrated treatment assessment typically requires the accurate modeling of time-to-event outcomes. To tackle this sequential treatment effect estimation problem, we developed causal dynamic survival model (CDSM) for causal inference with survival outcomes using longitudinal electronic health record (EHR). CDSM has impressive explanatory performance while maintaining the prediction capability of conventional binary neural network predictors. It borrows the strength from explanatory framework including the survival analysis and counterfactual framework and integrates them with the prediction power from a deep Bayesian recurrent neural network to extract implicit knowledge from EHR data. In two large clinical cohort studies, our model identified the conditional average treatment effect in accordance with previous literature yet detected individual effect heterogeneity over time and patient subgroups. The model provides individualized and clinically interpretable treatment effect estimations to improve patient outcomes.
翻译:支持临床医师进行风险校准治疗评估的智能医疗系统通常要求准确模拟时间到活动结果。为了解决这一连续治疗效果估计问题,我们开发了因果动态生存模型(CDSM),用于使用纵向电子健康记录(EHR)对生存结果进行因果推断。CDSM在保持常规双神经网络预测器的预测能力的同时,具有令人印象深刻的解释性性性性表现,它从解释性框架(包括生存分析和反事实框架)中借用了力量,并把它们与深处Bayesian经常神经网络的预测力结合起来,从EHR数据中提取隐性知识。在两个大型临床组群研究中,我们的模式根据以往的文献确定了有条件的平均治疗效果,但发现个体效应在时间和病人分组中的异性。该模型提供了个性和临床可解释性治疗效果估算,以改善患者结果。