Image harmonization targets at adjusting the foreground in a composite image to make it compatible with the background, producing a more realistic and harmonious image. Training deep image harmonization network requires abundant training data, but it is extremely difficult to acquire training pairs of composite images and ground-truth harmonious images. Therefore, existing works turn to adjust the foreground appearance in a real image to create a synthetic composite image. However, such adjustment may not faithfully reflect the natural illumination change of foreground. In this work, we explore a novel transitive way to construct image harmonization dataset. Specifically, based on the existing datasets with recorded illumination information, we first convert the foreground in a real image to the standard illumination condition, and then convert it to another illumination condition, which is combined with the original background to form a synthetic composite image. In this manner, we construct an image harmonization dataset called ccHarmony, which is named after color checker (cc). The dataset is available at https://github.com/bcmi/Image-Harmonization-Dataset-ccHarmony.
翻译:以复合图像调整前景, 使其与背景相容, 产生更现实和和谐的图像。 深层图像协调网络培训需要大量的培训数据, 但获取复合图像和地面真实和谐图像的培训配对极为困难。 因此, 现有作品转而调整真实图像的表面表面外观, 以创建合成合成图像。 但是, 这种调整可能不忠实地反映前景的自然光化变化。 在这项工作中, 我们探索了一种新的过渡方法来构建图像协调数据集。 具体地说, 我们根据记录有照明信息的现有数据集, 首先将真实图像中的前台表面转换为标准照明状态, 然后将其转换为另一种光化状态, 这与原始背景相结合, 形成合成合成复合图像。 这样, 我们构建了一个名为 ccHarmony 的图像协调数据集, 以颜色校验器命名 (cccc) 。 该数据集可在 https://github.com/bmi/ Image- Harmatet- ccomony 上查阅 。