The applications of conversational agents for scientific disciplines (as expert domains) are understudied due to the lack of dialogue data to train such agents. While most data collection frameworks, such as Amazon Mechanical Turk, foster data collection for generic domains by connecting crowd workers and task designers, these frameworks are not much optimized for data collection in expert domains. Scientists are rarely present in these frameworks due to their limited time budget. Therefore, we introduce a novel framework to collect dialogues between scientists as domain experts on scientific papers. Our framework lets scientists present their scientific papers as groundings for dialogues and participate in dialogue they like its paper title. We use our framework to collect a novel argumentative dialogue dataset, ArgSciChat. It consists of 498 messages collected from 41 dialogues on 20 scientific papers. Alongside extensive analysis on ArgSciChat, we evaluate a recent conversational agent on our dataset. Experimental results show that this agent poorly performs on ArgSciChat, motivating further research on argumentative scientific agents. We release our framework and the dataset.
翻译:由于缺乏对话数据来训练科学学科(专家领域)的对话代理人,因此对科学学科(作为专家领域)对话代理人的应用研究不足。虽然大多数数据收集框架,如亚马逊机械土耳其公司,通过将人群工作者和任务设计者联系起来,促进为通用领域收集数据,但这些框架在专家领域数据收集方面没有多大的优化。由于时间有限,科学家很少出现在这些框架中。因此,我们引入了一个新的框架来收集科学家作为科学论文领域专家的对话。我们的框架允许科学家提出他们的科学论文作为对话的基础,并参与他们喜欢其论文标题的对话。我们利用我们的框架收集一个新的辩论性对话数据集,ArgSciChat。它包括从关于20个科学论文的41个对话中收集的498条信息。除了对ArgSciChat的广泛分析外,我们还评估了我们数据集上最近的谈话代理人。实验结果显示,该代理人在ArgSciChat上表现不佳,鼓励对论辩科学代理人进行进一步研究。我们发布了我们的框架和数据集。