We study the problem of estimating the score function using both implicit score matching and denoising score matching. Assuming that the data distribution exhibiting a low-dimensional structure, we prove that implicit score matching is able not only to adapt to the intrinsic dimension, but also to achieve the same rates of convergence as denoising score matching in terms of the sample size. Furthermore, we demonstrate that both methods allow us to estimate log-density Hessians without the curse of dimensionality by simple differentiation. This justifies convergence of ODE-based samplers for generative diffusion models. Our approach is based on Gagliardo-Nirenberg-type inequalities relating weighted $L^2$-norms of smooth functions and their derivatives.


翻译:本研究探讨了结合隐式分数匹配与去噪分数匹配的分数函数估计问题。在数据分布呈现低维结构的假设下,我们证明隐式分数匹配不仅能适应本征维度,还能在样本量意义上达到与去噪分数匹配相同的收敛速率。此外,我们通过理论分析表明,两种方法均可通过简单微分实现无维度灾难的对数密度Hessian矩阵估计,这为基于常微分方程的生成扩散模型采样器收敛性提供了理论依据。我们的证明方法基于关联光滑函数加权$L^2$范数与其导数的Gagliardo-Nirenberg型不等式。

0
下载
关闭预览

相关内容

【ICML2023】SEGA:结构熵引导的图对比学习锚视图
专知会员服务
23+阅读 · 2023年5月10日
【NeurIPS2022】VICRegL:局部视觉特征的自监督学习
专知会员服务
32+阅读 · 2022年10月6日
专知会员服务
19+阅读 · 2021年8月15日
CVPR 2019:精确目标检测的不确定边界框回归
AI科技评论
13+阅读 · 2019年9月16日
使用CNN生成图像先验实现场景的盲图像去模糊
统计学习与视觉计算组
10+阅读 · 2018年6月14日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
8+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2025年12月27日
Arxiv
0+阅读 · 2025年12月26日
VIP会员
相关VIP内容
相关资讯
CVPR 2019:精确目标检测的不确定边界框回归
AI科技评论
13+阅读 · 2019年9月16日
使用CNN生成图像先验实现场景的盲图像去模糊
统计学习与视觉计算组
10+阅读 · 2018年6月14日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
8+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员