We introduce a novel longitudinal mixed model for analyzing complex multidimensional functional data, addressing challenges such as high-resolution, structural complexities, and computational demands. Our approach integrates dimension reduction techniques, including basis function representation and Tucker tensor decomposition, to model complex functional (e.g., spatial and temporal) variations, group differences, and individual heterogeneity while drastically reducing model dimensions. The model accommodates multiplicative random effects whose marginalization yields a novel Tucker-decomposed covariance-tensor framework. To ensure scalability, we employ semi-orthogonal mode matrices implemented via a novel graph-Laplacian-based smoothness prior with low-rank approximation, leading to an efficient posterior sampling method. A cumulative shrinkage strategy promotes sparsity and enables semiautomated rank selection. We establish theoretical guarantees for posterior convergence and demonstrate the method's effectiveness through simulations, showing significant improvements over existing techniques. Applying the method to Alzheimer's Disease Neuroimaging Initiative (ADNI) neuroimaging data reveals novel insights into local brain changes associated with disease progression, highlighting the method's practical utility for studying cognitive decline and neurodegenerative conditions.
翻译:本文提出了一种新颖的纵向混合模型,用于分析复杂的多维函数数据,以应对高分辨率、结构复杂性和计算需求等挑战。我们的方法整合了降维技术,包括基函数表示和Tucker张量分解,以建模复杂的函数(如空间和时间)变异、组间差异和个体异质性,同时大幅降低模型维度。该模型容纳了乘法随机效应,其边际化过程产生了一种新颖的Tucker分解协方差张量框架。为确保可扩展性,我们采用了半正交模态矩阵,通过一种新颖的基于图拉普拉斯的低秩近似平滑先验实现,从而形成了一种高效的后验采样方法。累积收缩策略促进了稀疏性,并实现了半自动的秩选择。我们为后验收敛建立了理论保证,并通过模拟实验证明了该方法的有效性,显示出相对于现有技术的显著改进。将该方法应用于阿尔茨海默病神经影像学倡议(ADNI)的神经影像数据,揭示了与疾病进展相关的局部脑变化的新见解,突显了该方法在研究认知衰退和神经退行性疾病方面的实际应用价值。