We study instrumental variable regression in data rich environments. The goal is to estimate a linear model from many noisy covariates and many noisy instruments. Our key assumption is that true covariates and true instruments are repetitive, though possibly different in nature; they each reflect a few underlying factors, however those underlying factors may be misaligned. We analyze a family of estimators based on two stage least squares with spectral regularization: canonical correlations between covariates and instruments are learned in the first stage, which are used as regressors in the second stage. As a theoretical contribution, we derive upper and lower bounds on estimation error, proving optimality of the method with noisy data. As a practical contribution, we provide guidance on which types of spectral regularization to use in different regimes.


翻译:本研究探讨数据丰富环境下的工具变量回归问题。目标是从大量带噪声的协变量和大量带噪声的工具变量中估计线性模型。我们的核心假设是:真实协变量与真实工具变量具有重复性特征,尽管二者性质可能不同——它们各自反映少量潜在因子,但这些潜在因子可能存在错位现象。我们分析了一类基于谱正则化两阶段最小二乘的估计器:第一阶段学习协变量与工具变量间的典型相关性,第二阶段将其作为回归因子。理论贡献方面,我们推导了估计误差的上下界,证明了该方法在带噪声数据条件下的最优性。实践贡献方面,我们针对不同数据特征提出了谱正则化方法的选择指导。

0
下载
关闭预览

相关内容

专知会员服务
12+阅读 · 2021年6月20日
MonoGRNet:单目3D目标检测的通用框架(TPAMI2021)
专知会员服务
18+阅读 · 2021年5月3日
【WWW2021】基于图层次相关性匹配信号的Ad-hoc 检索
专知会员服务
14+阅读 · 2021年2月25日
【WSDM2021】基于演化状态图的时间序列事件预测
专知会员服务
54+阅读 · 2020年12月1日
【CVPR2021】跨模态检索的概率嵌入
专知
17+阅读 · 2021年3月2日
使用CNN生成图像先验实现场景的盲图像去模糊
统计学习与视觉计算组
10+阅读 · 2018年6月14日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 12月24日
VIP会员
相关VIP内容
专知会员服务
12+阅读 · 2021年6月20日
MonoGRNet:单目3D目标检测的通用框架(TPAMI2021)
专知会员服务
18+阅读 · 2021年5月3日
【WWW2021】基于图层次相关性匹配信号的Ad-hoc 检索
专知会员服务
14+阅读 · 2021年2月25日
【WSDM2021】基于演化状态图的时间序列事件预测
专知会员服务
54+阅读 · 2020年12月1日
相关资讯
【CVPR2021】跨模态检索的概率嵌入
专知
17+阅读 · 2021年3月2日
使用CNN生成图像先验实现场景的盲图像去模糊
统计学习与视觉计算组
10+阅读 · 2018年6月14日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员