This paper presents novel interpretations to the field of classical signal processing of the Wigner-Ville transform as an information measurement tool. The transform's utility in detecting and localizing information-laden signals amidst noisy and cluttered backgrounds, and further providing measure of their information volumes, are detailed herein using Tsallis' entropy and information and related functionals. Example use cases in radio frequency communications are given, where Wigner-Ville-based detection measures can be seen to provide significant sensitivity advantage, for some shown contexts greater than 15~dB advantage, over energy-based measures and without extensive training routines. Such an advantage is particularly significant for applications which have limitations on observation resources including time/space integration pressures and transient and/or feeble signals, where Wigner-Ville-based methods would improve sensing effectiveness by multiple orders of magnitude. The potential for advancement of several such applications is discussed.


翻译:本文针对经典信号处理领域提出了维格纳-维尔变换作为信息测量工具的新颖阐释。通过引入Tsallis熵及相关信息泛函,详细论证了该变换在噪声与杂波背景下检测与定位信息承载信号,并进一步量化其信息容量的效用。研究以射频通信为例展开案例分析,结果表明基于维格纳-维尔的检测度量相较于能量检测方法具有显著灵敏度优势——在某些所示情境中超过15~dB,且无需复杂的训练流程。这种优势对于受观测资源限制的应用场景(包括时空积分压力、瞬态/微弱信号等)尤为重要,基于维格纳-维尔的方法可将检测效能提升数个数量级。本文进一步探讨了该方法在多个相关应用领域中的推进潜力。

0
下载
关闭预览

相关内容

144页ppt《扩散模型》,Google DeepMind Sander Dieleman
专知会员服务
48+阅读 · 2025年11月21日
【ICML2023】SEGA:结构熵引导的图对比学习锚视图
专知会员服务
23+阅读 · 2023年5月10日
重新思考图卷积网络:GNN只是一种滤波器
新智元
28+阅读 · 2019年6月3日
使用CNN生成图像先验实现场景的盲图像去模糊
统计学习与视觉计算组
10+阅读 · 2018年6月14日
论文浅尝 | Know-Evolve: Deep Temporal Reasoning for Dynamic KG
开放知识图谱
36+阅读 · 2018年3月30日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
重新思考图卷积网络:GNN只是一种滤波器
新智元
28+阅读 · 2019年6月3日
使用CNN生成图像先验实现场景的盲图像去模糊
统计学习与视觉计算组
10+阅读 · 2018年6月14日
论文浅尝 | Know-Evolve: Deep Temporal Reasoning for Dynamic KG
开放知识图谱
36+阅读 · 2018年3月30日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员