Twinned regression methods are designed to solve the dual problem to the original regression problem, predicting differences between regression targets rather then the targets themselves. A solution to the original regression problem can be obtained by ensembling predicted differences between the targets of an unknown data point and multiple known anchor data points. We explore different aspects of twinned regression methods: (1) We decompose different steps in twinned regression algorithms and examine their contributions to the final performance, (2) We examine the intrinsic ensemble quality, (3) We combine twin neural network regression with k-nearest neighbor regression to design a more accurate and efficient regression method, and (4) we develop a simplified semi-supervised regression scheme.
翻译:双向回归方法旨在解决原始回归问题的双重问题,预测回归目标之间的差异,而不是目标本身。通过将未知数据点目标与多个已知锚点数据点的目标之间的预测差异混在一起,可以找到最初回归问题的解决办法。我们探讨了双向回归方法的不同方面:(1)我们在双向回归算法中分解不同步骤,并检查其对最终性能的贡献;(2)我们研究内在的共性质量;(3)我们将双向神经网络回归与K型最远的邻居回归结合起来,以设计更准确、更有效的回归方法;(4)我们制定简化的半监督回归方法。