We consider a new perspective on dialog state tracking (DST), the task of estimating a user's goal through the course of a dialog. By formulating DST as a semantic parsing task over hierarchical representations, we can incorporate semantic compositionality, cross-domain knowledge sharing and co-reference. We present TreeDST, a dataset of 27k conversations annotated with tree-structured dialog states and system acts. We describe an encoder-decoder framework for DST with hierarchical representations, which leads to 20% improvement over state-of-the-art DST approaches that operate on a flat meaning space of slot-value pairs.
翻译:我们考虑了关于对话状态跟踪(DST)的新观点,即通过对话来估计用户的目标。通过将DST设计成一个语义分解任务,而不是等级代表,我们可以纳入语义构成性、跨域知识分享和共同参照。我们展示了TreeDST数据集,这是一个27k对话的数据集,带有树结构对话框状态和系统行为附加说明。我们描述了一个带有等级代表的DST编码器解码框架,这导致与最先进的DST方法相比,20%的改善。