Evolutionary optimization algorithms, including particle swarm optimization (PSO), have been successfully applied in oil industry for production planning and control. Such optimization studies are quite challenging due to large number of decision variables, production scenarios, and subsurface uncertainties. In this work, a multi-stage, multi-swarm PSO (MS2PSO) is proposed to fix certain issues with canonical PSO algorithm such as premature convergence, excessive influence of global best solution, and oscillation. Multiple experiments are conducted using Olympus benchmark to compare the efficacy of algorithms. Canonical PSO hyperparameters are first tuned to prioritize exploration in early phase and exploitation in late phase. Next, a two-stage multi-swarm PSO (2SPSO) is used where multiple-swarms of the first stage collapse into a single swarm in the second stage. Finally, MS2PSO with multiple stages and multiple swarms is used in which swarms recursively collapse after each stage. Multiple swarm strategy ensures that diversity is retained within the population and multiple modes are explored. Staging ensures that local optima found during initial stage does not lead to premature convergence. Optimization test case comprises of 90 control variables and a twenty year period of flow simulation. It is observed that different algorithm designs have their own benefits and drawbacks. Multiple swarms and stages help algorithm to move away from local optima, but at the same time they may also necessitate larger number of iterations for convergence. Both 2SPSO and MS2PSO are found to be helpful for problems with high dimensions and multiple modes where greater degree of exploration is desired.


翻译:在石油工业中成功应用了包括粒子群温优化(PSO)在内的进化优化算法,以进行生产规划和控制。这种优化研究由于决策变量、生产情景和地表下不确定性的数量众多而具有相当大的挑战性。在这项工作中,建议采用多阶段、多层温化 PSO (MS2PSO) 来解决某些问题,如过早趋同、全球最佳解决方案的过度影响和振荡。正在使用奥林帕斯基准进行多项实验,以比较算法的功效。Canonial PSO 超参数首先调整,以便在早期阶段和后期优先进行勘探和开发。接下来,将使用两阶段的多层多层多层PSO (MSO) (MS2PSO) 进行两阶段多层多层多层的多层多层的探索,第一阶段的多层的MSPSO (MSSO) 也用来解决某些阶段的振荡,而后期的多层性趋同级的 。 多层战略确保多样性在初始阶段内保留人口和多种模式内保持多样性, 水平的移动。

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
已删除
将门创投
4+阅读 · 2019年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Regularity and stability of feedback relaxed controls
The Measure of Intelligence
Arxiv
7+阅读 · 2019年11月5日
VIP会员
相关资讯
已删除
将门创投
4+阅读 · 2019年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员