Leveraging recent advances on mobile edge computing (MEC), edge intelligence has emerged as a promising paradigm to support mobile artificial intelligence (AI) applications at the network edge. In this paper, we consider the AI service placement problem in a multi-user MEC system, where the access point (AP) places the most up-to-date AI program at user devices to enable local computing/task execution at the user side. To fully utilize the stringent wireless spectrum and edge computing resources, the AP sends the AI service program to a user only when enabling local computing at the user yields a better system performance. We formulate a mixed-integer non-linear programming (MINLP) problem to minimize the total computation time and energy consumption of all users by jointly optimizing the service placement (i.e., which users to receive the program) and resource allocation (on local CPU frequencies, uplink bandwidth, and edge CPU frequency). To tackle the MINLP problem, we derive analytical expressions to calculate the optimal resource allocation decisions with low complexity. This allows us to efficiently obtain the optimal service placement solution by search-based algorithms such as meta-heuristic or greedy search algorithms. To enhance the algorithm scalability in large-sized networks, we further propose an ADMM (alternating direction method of multipliers) based method to decompose the optimization problem into parallel tractable MINLP subproblems. The ADMM method eliminates the need of searching in a high-dimensional space for service placement decisions and thus has a low computational complexity that grows linearly with the number of users. Simulation results show that the proposed algorithms perform extremely close to the optimum and significantly outperform the other representative benchmark algorithms.


翻译:利用移动边缘计算(MEC)的最新进步, 边缘情报已成为支持网络边缘移动人工智能(AI)应用的有希望的范例。 在本文中,我们考虑了多用户 MEC 系统中的 AI 服务配置问题。 在多用户 MEC 系统中, 访问点( AP) 将最新的 AI 程序放在用户设备上, 以便在用户方面进行本地计算/ 任务执行。 为了充分利用严格的无线频谱和边端计算资源, AP 将 AI 服务程序发送给用户, 只有当用户能够让本地计算产生更好的系统性能时, 才能将 AI AI 服务程序发送给用户。 我们设计了一个混合的混编非线性非线性程序( MINLP) 问题, 通过联合优化服务配置( AP) (即用户接收程序) 和资源分配( 本地CPU 频率、 上链带带带带带带带带带宽和边缘 CPU 频率) 。 为了解决 MINLP 问题, 我们从分析表达分析表达出最合适的服务配置解决方案。 。, 通过基于搜索算算算算算算法的低精度的系统,, 将基于 高比率 系统 的系统搜索算算算算方法的系统 更接近的系统, 更精确的系统, 将快速的系统 更高级的系统 更高级的系统 更高级的系统 向更高级的系统,, 更需要更细的系统更高级的系统更细的系统更细的系统更细化的系统更细化。

0
下载
关闭预览

相关内容

机器学习组合优化
专知会员服务
109+阅读 · 2021年2月16日
【边缘智能综述论文】A Survey on Edge Intelligence
专知会员服务
121+阅读 · 2020年3月30日
msf实现linux shell反弹
黑白之道
49+阅读 · 2019年8月16日
计算机类 | PLDI 2020等国际会议信息6条
Call4Papers
3+阅读 · 2019年7月8日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
人工智能 | UAI 2019等国际会议信息4条
Call4Papers
6+阅读 · 2019年1月14日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】基于TVM工具链的深度学习编译器 NNVM compiler发布
机器学习研究会
5+阅读 · 2017年10月7日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
35+阅读 · 2019年11月7日
VIP会员
相关VIP内容
机器学习组合优化
专知会员服务
109+阅读 · 2021年2月16日
【边缘智能综述论文】A Survey on Edge Intelligence
专知会员服务
121+阅读 · 2020年3月30日
相关资讯
msf实现linux shell反弹
黑白之道
49+阅读 · 2019年8月16日
计算机类 | PLDI 2020等国际会议信息6条
Call4Papers
3+阅读 · 2019年7月8日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
人工智能 | UAI 2019等国际会议信息4条
Call4Papers
6+阅读 · 2019年1月14日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】基于TVM工具链的深度学习编译器 NNVM compiler发布
机器学习研究会
5+阅读 · 2017年10月7日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员