This paper proposes a relaxed control regularization with general exploration rewards to design robust feedback controls for multi-dimensional continuous-time stochastic exit time problems. We establish that the regularized control problem admits a H\"{o}lder continuous feedback control, and demonstrate that both the value function and the feedback control of the regularized control problem are Lipschitz stable with respect to parameter perturbations. Moreover, we show that a pre-computed feedback relaxed control has a robust performance in a perturbed system, and derive a first-order sensitivity equation for both the value function and optimal feedback relaxed control. These stability results provide a theoretical justification for recent reinforcement learning heuristics that including an exploration reward in the optimization objective leads to more robust decision making. We finally prove first-order monotone convergence of the value functions for relaxed control problems with vanishing exploration parameters, which subsequently enables us to construct the pure exploitation strategy of the original control problem based on the feedback relaxed controls.


翻译:本文建议放松控制规范, 并给予总体勘探奖励, 以设计对多维连续时间随机退出时间问题的强力反馈控制。 我们确定常规化控制问题认可了 H\"{o}lder 持续反馈控制, 并证明常规化控制问题的价值功能和反馈控制在参数扰动方面都是稳定的。 此外, 我们显示, 预先计算好的反馈放松控制在受扰动的系统中表现良好, 并且为价值功能和最佳反馈放松控制得出了一阶敏感度方程式。 这些稳定性结果为最近的强化学习偏重提供了理论依据, 包括优化目标中的勘探奖励导致更强有力的决策。 我们最终证明, 放松控制问题的价值功能与消失的勘探参数相匹配, 从而使我们能够根据反馈宽松控制建立原始控制问题的纯利用战略 。

0
下载
关闭预览

相关内容

专知会员服务
98+阅读 · 2021年7月11日
专知会员服务
113+阅读 · 2020年10月8日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
【国防科大】复杂异构数据的表征学习综述
专知会员服务
84+阅读 · 2020年4月23日
【反馈循环自编码器】FEEDBACK RECURRENT AUTOENCODER
专知会员服务
22+阅读 · 2020年1月28日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年9月22日
Arxiv
7+阅读 · 2020年6月29日
VIP会员
相关VIP内容
专知会员服务
98+阅读 · 2021年7月11日
专知会员服务
113+阅读 · 2020年10月8日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
【国防科大】复杂异构数据的表征学习综述
专知会员服务
84+阅读 · 2020年4月23日
【反馈循环自编码器】FEEDBACK RECURRENT AUTOENCODER
专知会员服务
22+阅读 · 2020年1月28日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员