Labelled data is the foundation of most natural language processing tasks. However, labelling data is difficult and there often are diverse valid beliefs about what the correct data labels should be. So far, dataset creators have acknowledged annotator subjectivity, but rarely actively managed it in the annotation process. This has led to partly-subjective datasets that fail to serve a clear downstream use. To address this issue, we propose two contrasting paradigms for data annotation. The descriptive paradigm encourages annotator subjectivity, whereas the prescriptive paradigm discourages it. Descriptive annotation allows for the surveying and modelling of different beliefs, whereas prescriptive annotation enables the training of models that consistently apply one belief. We discuss benefits and challenges in implementing both paradigms, and argue that dataset creators should explicitly aim for one or the other to facilitate the intended use of their dataset. Lastly, we conduct an annotation experiment using hate speech data that illustrates the contrast between the two paradigms.
翻译:标签数据是大多数自然语言处理任务的基础。 但是,标签数据是困难的,而且对于正确的数据标签应该是什么,往往有不同的有效信念。 到目前为止,数据集创建者已经承认批注主观性,但很少在批注过程中积极管理它。这导致了部分主观数据集,不能明显用于下游用途。为了解决这一问题,我们提出了两个数据注释的对比模式。描述性范式鼓励批注主观性,而规范性范式则阻止了它。描述性说明允许对不同信仰进行勘查和建模,而描述性说明允许对一贯应用一种信仰的模型进行培训。我们讨论了实施两种模式的好处和挑战,认为数据集创建者应该明确针对其中一种或另一种模式,以便利预定使用其数据集。最后,我们用仇恨言论数据进行注解实验,以说明两种模式之间的对比。