This study proposes a hierarchically integrated framework for safe task and motion planning (TAMP) of bipedal locomotion in a partially observable environment with dynamic obstacles and uneven terrain. The high-level task planner employs linear temporal logic (LTL) for a reactive game synthesis between the robot and its environment and provides a formal guarantee on navigation safety and task completion. To address environmental partial observability, a belief abstraction is employed at the high-level navigation planner to estimate the dynamic obstacles' location. Accordingly, a synthesized action planner sends a set of locomotion actions to the middle-level motion planner, while incorporating safe locomotion specifications extracted from safety theorems based on a reduced-order model (ROM) of the locomotion process. The motion planner employs the ROM to design safety criteria and a sampling algorithm to generate non-periodic motion plans that accurately track high-level actions. To address external perturbations, this study also investigates safe sequential composition of the keyframe locomotion state and achieves robust transitions against external perturbations through reachability analysis. A set of ROM-based hyperparameters are finally interpolated to design whole-body locomotion gaits generated by trajectory optimization and validate the viable deployment of the ROM-based TAMP on a 20-degrees-of-freedom Cassie robot designed by Agility Robotics.
翻译:此项研究提议了一个安全任务和运动规划的分级综合框架(TAMP),在一个部分可观测的环境中,在充满动态障碍和不均匀地形的条件下,对双层移动进行安全任务和运动规划。高级别任务规划员使用线性时间逻辑(LTL),在机器人与环境之间进行反应式游戏合成,并为导航安全和任务完成提供正式保障。为解决环境部分可视性问题,高级导航规划员采用了信仰抽象,以估计动态障碍的位置。因此,一个综合行动计划员向中级运动规划员发送一套移动行动,同时纳入根据移动过程的减序模型(ROM)从安全理论中提取的安全行动规格。运动规划员使用ROM来设计安全标准和取样算法,以生成准确跟踪高层行动的非定期运动计划。为了解决外部扰动,本项研究还调查了主要框架移动障碍状态的安全顺序构成,并通过对可达性分析实现外部扰动性转变实现稳健的过渡。一个基于ROM-roma-romoudalimal-imal-imal-imal-imalimal-imallistrapal-sallistraplistrapal-sal-sal-slational-sal-sal-sal-sal-sal-siltraluptralation-s-s-s-sildal-slupdal-s-s-slupal-sal-sal-sal-s-s-silizal-siliz)。最后设计了20制成的自动校平平平压校平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平,最后。