We consider multi-level composite optimization problems where each mapping in the composition is the expectation over a family of random smooth mappings or the sum of some finite number of smooth mappings. We present a normalized proximal approximate gradient (NPAG) method where the approximate gradients are obtained via nested stochastic variance reduction. In order to find an approximate stationary point where the expected norm of its gradient mapping is less than $\epsilon$, the total sample complexity of our method is $O(\epsilon^{-3})$ in the expectation case, and $O(N+\sqrt{N}\epsilon^{-2})$ in the finite-sum case where $N$ is the total number of functions across all composition levels. In addition, the dependence of our total sample complexity on the number of composition levels is polynomial, rather than exponential as in previous work.


翻译:我们考虑的是多层次综合优化问题,因为每次绘图在组成中都是对随机平滑绘图组合的预期值,或者对一定数量的平滑绘图总和的预期值。我们提出了一个正常的近似近似梯度(NPAG)方法,通过嵌套的随机差异减少来获得近似梯度。为了找到一个大约的固定点,其梯度绘图的预期标准低于美元,在预期的情况下,我们方法的总样本复杂性是O美元(EpsilonQQQ--3}),在有限总和中,美元(N ⁇ sqrt{N ⁇ epsilonQ ⁇ -2}),其中,美元是所有构成等级的函数总数。此外,我们总样本复杂性对组成级别数量的依赖性是多元的,而不是像以前的工作那样的指数性。

0
下载
关闭预览

相关内容

【2021新书】机器学习超参数优化,177页pdf
专知会员服务
160+阅读 · 2021年5月18日
专知会员服务
142+阅读 · 2021年3月17日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
52+阅读 · 2020年11月3日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年6月29日
Arxiv
0+阅读 · 2021年6月28日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关VIP内容
【2021新书】机器学习超参数优化,177页pdf
专知会员服务
160+阅读 · 2021年5月18日
专知会员服务
142+阅读 · 2021年3月17日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
52+阅读 · 2020年11月3日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员