Since multidrug combination is widely applied, the accurate prediction of drug-drug interaction (DDI) is becoming more and more critical. In our method, we use graph to represent drug-drug interaction: nodes represent drug; edges represent drug-drug interactions. Based on our assumption, we convert the prediction of DDI to link prediction problem, utilizing known drug node characteristics and DDI types to predict unknown DDI types. This work proposes a Graph Distance Neural Network (GDNN) to predict drug-drug interactions. Firstly, GDNN generates initial features for nodes via target point method, fully including the distance information in the graph. Secondly, GDNN adopts an improved message passing framework to better generate each drug node embedded expression, comprehensively considering the nodes and edges characteristics synchronously. Thirdly, GDNN aggregates the embedded expressions, undergoing MLP processing to generate the final predicted drug interaction type. GDNN achieved Test Hits@20=0.9037 on the ogb-ddi dataset, proving GDNN can predict DDI efficiently.
翻译:由于多种药物的结合被广泛应用,对药物-药物相互作用(DDI)的准确预测变得越来越重要。在我们的方法中,我们使用图表来代表药物-药物相互作用:节点代表药物;边缘代表药物-药物相互作用。根据我们的假设,我们将DDI的预测转换为将预测问题联系起来,利用已知的药物节点特点和DDI类型来预测未知的DDI类型。这项工作提议建立一个图形距离神经网络(GDNN)来预测药物-药物相互作用。首先,GDNN通过目标点方法为节点产生初步特征,充分包括图中的距离信息。第二,GDNN采用改进的信息传递框架来更好地生成每一种药物节点嵌入的表达方式,全面同步考虑节点和边缘特征。第三,GDNNN将嵌入的表达方式汇总起来,正在进行MLP处理以产生最后的预测药物相互作用类型。GDNN在ogb-ddi数据集上实现了测试 Hits@20=0.9037,证明GDNNN能够有效地预测DDI。