Session-based recommendation targets next-item prediction by exploiting user behaviors within a short time period. Compared with other recommendation paradigms, session-based recommendation suffers more from the problem of data sparsity due to the very limited short-term interactions. Self-supervised learning, which can discover ground-truth samples from the raw data, holds vast potentials to tackle this problem. However, existing self-supervised recommendation models mainly rely on item/segment dropout to augment data, which are not fit for session-based recommendation because the dropout leads to sparser data, creating unserviceable self-supervision signals. In this paper, for informative session-based data augmentation, we combine self-supervised learning with co-training, and then develop a framework to enhance session-based recommendation. Technically, we first exploit the session-based graph to augment two views that exhibit the internal and external connectivities of sessions, and then we build two distinct graph encoders over the two views, which recursively leverage the different connectivity information to generate ground-truth samples to supervise each other by contrastive learning. In contrast to the dropout strategy, the proposed self-supervised graph co-training preserves the complete session information and fulfills genuine data augmentation. Extensive experiments on multiple benchmark datasets show that, session-based recommendation can be remarkably enhanced under the regime of self-supervised graph co-training, achieving the state-of-the-art performance.
翻译:与其它建议范式相比,届会建议由于短期互动非常有限而更多地存在数据宽度问题。自我监督的学习能够从原始数据中发现地面真相样本,因此具有解决这一问题的巨大潜力。然而,现有的自我监督的建议模式主要依靠项目/部分疏漏来增加数据,这些数据不适合届会建议,因为辍学导致数据稀疏,造成无法使用的自我监督信号。在本文中,为了增加基于会议的信息,我们将基于会议的数据扩增,将自我监督的学习与共同培训结合起来,然后制定框架来加强基于会议的建议。在技术上,我们首先利用届会的图表来增加两种观点,这些观点显示届会的内部和外部关联性,然后我们在两种观点上建立两个不同的图表编码,这两种观点反复利用不同的连接信息生成地面图样,以通过对比性学习来监督对方。在对比性分析的届会基础上,我们将自我监督的自我监督的学习与共同培训相结合,然后开发一个框架以加强会议为基础的建议。在技术上,我们利用基于届会的基于届会的外部关联性,然后我们建立两个截然不同的图表,通过对比性对比性学习来生成地面透性样本来监督对方的相互监督对方。 与升级的系统化的演示届会的升级的升级会议,可以显示的多级升级的升级届会的拟议届会,可以显示。