Many problems across computer vision and the natural sciences require the analysis of spherical data, for which representations may be learned efficiently by encoding equivariance to rotational symmetries. We present a generalized spherical CNN framework that encompasses various existing approaches and allows them to be leveraged alongside each other. The only existing non-linear spherical CNN layer that is strictly equivariant has complexity $\mathcal{O}(C^2L^5)$, where $C$ is a measure of representational capacity and $L$ the spherical harmonic bandlimit. Such a high computational cost often prohibits the use of strictly equivariant spherical CNNs. We develop two new strictly equivariant layers with reduced complexity $\mathcal{O}(CL^4)$ and $\mathcal{O}(CL^3 \log L)$, making larger, more expressive models computationally feasible. Moreover, we adopt efficient sampling theory to achieve further computational savings. We show that these developments allow the construction of more expressive hybrid models that achieve state-of-the-art accuracy and parameter efficiency on spherical benchmark problems.
翻译:计算机视野和自然科学的许多问题都要求分析球体数据,为此,可以通过对轮换对称的变异进行编码来有效地了解其表达方式。我们提出了一个通用的球体CNN框架,它包含各种现有办法,并允许它们相互利用。目前唯一一个严格变异的非线性球形CNN层具有复杂性$\mathcal{O}(C2L5})(C2L5})美元,其中C$是代表容量的尺度,而球体波段限制则值为$L$。这种高计算成本往往禁止使用严格的等式CNN。我们开发了两种严格的等式结构,其复杂性降低$\mathcal{O}(CL4}) 和$\mathcal{O}(CL}),使更大规模、更清晰的模型计算成为可行的。此外,我们采用了高效的抽样理论,以进一步实现计算节省。我们表明,这些发展使得能够构建更明确的混合模型,从而实现州-艺术基准的精确度和效率参数。