Describing dynamic medical systems using machine learning is a challenging topic with a wide range of applications. In this work, the possibility of modeling the blood glucose level of diabetic patients purely on the basis of measured data is described. A combination of the influencing variables insulin and calories are used to find an interpretable model. The absorption speed of external substances in the human body depends strongly on external influences, which is why time-shifts are added for the influencing variables. The focus is put on identifying the best timeshifts that provide robust models with good prediction accuracy that are independent of other unknown external influences. The modeling is based purely on the measured data using Sparse Identification of Nonlinear Dynamics. A differential equation is determined which, starting from an initial value, simulates blood glucose dynamics. By applying the best model to test data, we can show that it is possible to simulate the long-term blood glucose dynamics using differential equations and few, influencing variables.
翻译:使用机器学习来描述动态医疗系统是一个具有挑战性的主题,其应用范围很广。 在这项工作中,只根据测量的数据来模拟糖尿病患者的血糖水平的可能性得到了描述。 影响性胰岛素和卡路里变量的组合被用来寻找一个可解释的模型。 人体外部物质的吸收速度在很大程度上取决于外部影响, 这也是为什么为影响性变量添加时间档的原因。 重点是确定最佳时间档, 提供可靠的模型, 并具有良好的预测准确性, 不受其他未知的外部影响。 模型完全以测量的数据为基础, 使用非线性动态的 Sprass 识别 。 确定一个差异方程式, 从初始值开始, 模拟血糖动态 。 通过应用最佳模型来测试数据, 我们可以显示, 使用不同方程式和少数变量模拟长期血糖动态是可能的, 影响变量。