Users in consumption domains, like music, are often able to more efficiently provide preferences over a set of items (e.g. a playlist or radio) than over single items (e.g. songs). Unfortunately, this is an underexplored area of research, with most existing recommendation systems limited to understanding preferences over single items. Curating an item set exponentiates the search space that recommender systems must consider (all subsets of items!): this motivates conversational approaches-where users explicitly state or refine their preferences and systems elicit preferences in natural language-as an efficient way to understand user needs. We call this task conversational item set curation and present a novel data collection methodology that efficiently collects realistic preferences about item sets in a conversational setting by observing both item-level and set-level feedback. We apply this methodology to music recommendation to build the Conversational Playlist Curation Dataset (CPCD), where we show that it leads raters to express preferences that would not be otherwise expressed. Finally, we propose a wide range of conversational retrieval models as baselines for this task and evaluate them on the dataset.
翻译:消费领域的用户,如音乐,往往能够比单个项目(如歌曲)更高效地对一组项目(如播放列表或收音机)提供偏好。 不幸的是,这是一个探索不足的研究领域,大多数现有建议系统都局限于对单项的偏好。 一组项目将建议系统必须考虑的搜索空间(所有子集!): 这鼓励了对话方法, 用户以自然语言明确表示或改进其偏好和系统, 以此作为理解用户需要的有效方式。 我们称此任务对话项目为套装调制, 并展示一种新的数据收集方法, 通过观察项目级别和定级的反馈, 有效地收集对项目设置的现实偏好。 我们将这种方法应用于音乐建议, 以构建建议系统必须考虑的共鸣游戏调调调调调调调制数据集( CPCD ) 。 我们显示, 用户会以非其他方式表达偏好。 最后, 我们提出一系列广泛的对话检索模型, 作为这项任务的基准, 并在数据集上评价它们。</s>