Semantic segmentation of 3D point cloud is an essential task for autonomous driving environment perception. The pipeline of most pointwise point cloud semantic segmentation methods includes points sampling, neighbor searching, feature aggregation, and classification. Neighbor searching method like K-nearest neighbors algorithm, KNN, has been widely applied. However, the complexity of KNN is always a bottleneck of efficiency. In this paper, we propose an end-to-end neural architecture, Multiple View Pointwise Net, MVP-Net, to efficiently and directly infer large-scale outdoor point cloud without KNN or any complex pre/postprocessing. Instead, assumption-based space filling curves and multi-rotation of point cloud methods are introduced to point feature aggregation and receptive field expanding. Numerical experiments show that the proposed MVP-Net is 11 times faster than the most efficient pointwise semantic segmentation method RandLA-Net and achieves the same accuracy on the large-scale benchmark SemanticKITTI dataset.
翻译:3D点云的语义分解是自主驱动环境感知的基本任务。 多数点云的语义分解方法包括点取样、 邻居搜索、 特征聚合和分类。 KNN 等邻里搜索方法已被广泛应用。 但是, KNN 的复杂性始终是效率的瓶颈。 在本文中, 我们提议了一个端到端神经结构、 多视图点网、 MVP- Net, 以高效和直接地将大型室外点云转换成没有 KNN 或任何复杂的前/ 后处理的大型户外点云。 相反, 以假设为基础的空间填充曲线和点云多调方法作为特征集合和可接受场扩张的指针。 数字实验显示, 拟议的 MVP- Net 速度是最高效的点语系分解方法 RandLA- Net 的11倍, 在大型基准SmanticITTI 数据集上也实现了同样的精确度。