Semantic segmentation of point clouds, aiming to assign each point a semantic category, is critical to 3D scene understanding.Despite of significant advances in recent years, most of existing methods still suffer from either the object-level misclassification or the boundary-level ambiguity. In this paper, we present a robust semantic segmentation network by deeply exploring the geometry of point clouds, dubbed GeoSegNet. Our GeoSegNet consists of a multi-geometry based encoder and a boundary-guided decoder. In the encoder, we develop a new residual geometry module from multi-geometry perspectives to extract object-level features. In the decoder, we introduce a contrastive boundary learning module to enhance the geometric representation of boundary points. Benefiting from the geometric encoder-decoder modeling, our GeoSegNet can infer the segmentation of objects effectively while making the intersections (boundaries) of two or more objects clear. Experiments show obvious improvements of our method over its competitors in terms of the overall segmentation accuracy and object boundary clearness. Code is available at https://github.com/Chen-yuiyui/GeoSegNet.
翻译:点云的语义分解,旨在为每个点指定一个语义类别,对于3D场景理解至关重要。 尽管近年来取得了显著进展,但大多数现有方法仍然受到目标级别错误分类或边界层次模糊不清的影响。在本文中,我们通过深入探索点云的几何学,展示了一个强大的语义分解网络,称为GeoSegNet。我们的GeoSegNet由基于多地球测量的编码器和一个边界导解码器组成。在编码器中,我们开发了一个从多地球测量角度提取目标级别特征的新的剩余几何学模块。在解码器中,我们引入了一个对比边界学习模块,以加强边界点的几何代表性。从几何编码编码解码模型中受益,我们的GeoSegNet可以推导出物体的有效分解,同时使两个或两个以上物体的交叉点(边界)变得清晰。实验显示,我们的方法在整体分解准确性和对象边界清晰度方面比其竞争者明显改进了。在 http://sgius/Ceutubeuiuiel/Gcodecodection。