This report discusses the results of SBIR Phase I effort to prove the feasibility of dramatic improvement of the microbolometer-based Long Wave Infrared (LWIR) detectors sensitivity, especially for the 3D measurements. The resulting low SWaP-C thermal depth-sensing system will enable the situational awareness of Autonomous Air Vehicles for Advanced Air Mobility (AAM). It will provide robust 3D information of the surrounding environment, including low-contrast static and moving objects, at far distances in degraded visual conditions and GPS-denied areas. Our multi-sensor 3D perception enabled by COTS uncooled thermal sensors mitigates major weakness of LWIR sensors - low contrast by increasing the system sensitivity over an order of magnitude. There were no available thermal image sets suitable for evaluating this technology, making datasets acquisition our first goal. We discuss the design and construction of the prototype system with sixteen 640pix x 512pix LWIR detectors, camera calibration to subpixel resolution, capture, and process synchronized image. The results show the 3.84x contrast increase for intrascene-only data and an additional 5.5x - with the interscene accumulation, reaching system noise-equivalent temperature difference (NETD) of 1.9 mK with the 40 mK sensors.


翻译:本报告讨论了履行机构第一阶段工作的结果,以证明大幅改进以微型气压计为基础的长波红外红外探测器(LWIR)敏感度的可行性,特别是在3D测量方面。由此产生的低SWAP-C热深度遥感系统将使高级空中机动自动飞行器(AAM)能够了解情况。它将在退化的视觉条件和GPS封闭的地区,以远距离提供强有力的三维环境信息,包括低调静态和移动物体。我们的多传感器3D感应器由COTS无冷热感应器生成,减轻了LWIR传感器的主要弱点——通过提高系统在数量级上的敏感度来降低这种传感器的弱点。没有适合评估这一技术的热感应图集,使数据集成为我们的第一个目标。我们将讨论原型系统的设计和建造,使用16,640平ix x 512pix LWIR 探测器、摄像学校准分解、捕捉和进程同步图像。结果显示,3.84x对比器对LWIR传感器的主要弱点,通过提高系统敏感度的敏感度来评估这一技术,并增加5.5KMNMRMS。我们讨论了原型的温度。

0
下载
关闭预览

相关内容

【CHI2021】可解释人工智能导论
专知会员服务
119+阅读 · 2021年5月25日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
专知会员服务
109+阅读 · 2020年3月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
大神 一年100篇论文
CreateAMind
15+阅读 · 2018年12月31日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Arxiv
0+阅读 · 2022年2月13日
Arxiv
6+阅读 · 2018年3月28日
Arxiv
6+阅读 · 2018年2月8日
VIP会员
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
大神 一年100篇论文
CreateAMind
15+阅读 · 2018年12月31日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Top
微信扫码咨询专知VIP会员