Prediction based on Irregularly Sampled Time Series (ISTS) is of wide concern in the real-world applications. For more accurate prediction, the methods had better grasp more data characteristics. Different from ordinary time series, ISTS is characterised with irregular time intervals of intra-series and different sampling rates of inter-series. However, existing methods have suboptimal predictions due to artificially introducing new dependencies in a time series and biasedly learning relations among time series when modeling these two characteristics. In this work, we propose a novel Time Encoding (TE) mechanism. TE can embed the time information as time vectors in the complex domain. It has the the properties of absolute distance and relative distance under different sampling rates, which helps to represent both two irregularities of ISTS. Meanwhile, we create a new model structure named Time Encoding Echo State Network (TE-ESN). It is the first ESNs-based model that can process ISTS data. Besides, TE-ESN can incorporate long short-term memories and series fusion to grasp horizontal and vertical relations. Experiments on one chaos system and three real-world datasets show that TE-ESN performs better than all baselines and has better reservoir property.
翻译:基于不定期抽样的时间序列(ISSTS)的预测是真实世界应用中广泛关注的一个问题。为了更准确的预测,方法可以更好地掌握更多的数据特征。不同于普通的时间序列,ISTS具有不同系列内部时间间隔和不同系列之间抽样率的不规则特征。然而,现有方法具有不完美的预测,因为人为地在一个时间序列中引入新的依赖性,并且在模拟这两个特征的时间序列中,基于时间序列之间有偏颇的学习关系。在这项工作中,我们提议了一个新的时间编码(TE)机制。TE可以将时间信息作为时间矢量嵌入复杂的域。在不同的取样率下,它具有绝对距离和相对距离的特性,这有助于代表ISTS的两种不正常之处。与此同时,我们创建了名为时间编码回流状态网络(TE-ESN)的新模型结构。这是第一个基于ESNS的模型,可以处理ISTS数据。此外,TE-ESN可以包含长期的短记忆和系列融合,以掌握横向和纵向关系。在一次混乱系统和三个实际-世界数据库中,实验能够更好地进行所有运行。