We proposed the boundary-integral type neural networks (BINN) for the boundary value problems in computational mechanics. The boundary integral equations are employed to transfer all the unknowns to the boundary, then the unknowns are approximated using neural networks and solved through a training process. The loss function is chosen as the residuals of the boundary integral equations. Regularization techniques are adopted to efficiently evaluate the weakly singular and Cauchy principle integrals in boundary integral equations. Potential problems and elastostatic problems are mainly concerned in this article as a demonstration. The proposed method has several outstanding advantages: First, the dimensions of the original problem are reduced by one, thus the freedoms are greatly reduced. Second, the proposed method does not require any extra treatment to introduce the boundary conditions, since they are naturally considered through the boundary integral equations. Therefore, the method is suitable for complex geometries. Third, BINN is suitable for problems on the infinite or semi-infinite domains. Moreover, BINN can easily handle heterogeneous problems with a single neural network without domain decomposition.


翻译:我们为计算力中的边界价值问题建议了边界-整体型神经网络(BINN) 。 边界一体化方程式用于将所有未知物转移到边界,然后用神经网络进行近似,并通过培训过程解决。 损失函数被选为边界整体方程式的剩余物。 采用正规化技术来有效评估边界整体方程式中微弱单项和大通原则的内在组成部分。 潜在问题和弹性问题主要在本条中作为示范。 拟议的方法有若干突出的优点: 首先,原问题的方块减少了一个,从而大大降低了自由。 其次,拟议方法不需要任何额外的处理来引入边界条件,因为它们是自然通过边界整体方程式来考虑的。 因此,该方法适用于复杂的地理分布。 第三, BINN 适用于无限或半非铁化区域的问题。 此外, BINN 能够很容易处理单一神经网络的混杂问题,而没有域分解。

0
下载
关闭预览

相关内容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI杂志。 Publisher:Elsevier。 SIT:http://dblp.uni-trier.de/db/journals/integration/
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月6日
Arxiv
11+阅读 · 2022年9月1日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
23+阅读 · 2022年2月4日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员