Lower-limb prosthesis wearers are more prone to fall than non-amputees. Powered prostheses can reduce this instability of passive prostheses. While shown to be more stable in practice, powered prostheses generally use model-independent control methods that lack formal guarantees of stability and rely on heuristic tuning. Recent work overcame one of the limitations of model-based prosthesis control by developing a class of stable prosthesis subsystem controllers independent of the human model, except for its interaction forces with the prosthesis. Our work realizes the first model-dependent prosthesis controller that uses in-the-loop on-board real-time force sensing at the interface between the human and prosthesis and at the ground, resulting in stable human-prosthesis walking and increasing the validity of our formal guarantees of stability. Experimental results demonstrate this controller using force sensors outperforms the controller when not using force sensors with better tracking performance and more consistent tracking performance across 4 types of terrain.
翻译:低脂假肢磨损器比非抗药性穿戴器更容易跌落。 有动力的假肢可以减少被动假肢的不稳定性。 虽然在实际操作中显示比较稳定,但有动力的假肢通常使用模型独立的控制方法,这些方法缺乏对稳定性的正式保障,并依赖于休眠调节。最近的工作克服了基于模型的假肢控制的局限性之一,它开发了独立于人类模型的稳定假肢子控制器,但与假肢的互动力除外。我们的工作实现了第一个依靠模型的假肢控制器,在人与假肢之间的界面和地面上实时使用机载式实时动力感测器,从而导致稳定的人类假行走,并提高了我们正式稳定性保障的有效性。实验结果显示,在不使用更精确的强制传感器跟踪四类地形的性能和更加一致的跟踪性能时,这种控制器使用强力传感器比控制器更能优于控制器。