Investors make investment decisions depending on several factors such as fundamental analysis, technical analysis, and quantitative analysis. Another factor on which investors can make investment decisions is through sentiment analysis of news headlines, the sole purpose of this study. Natural Language Processing techniques are typically used to deal with such a large amount of data and get valuable information out of it. NLP algorithms convert raw text into numerical representations that machines can easily understand and interpret. This conversion can be done using various embedding techniques. In this research, embedding techniques used are BoW, TF-IDF, Word2Vec, BERT, GloVe, and FastText, and then fed to deep learning models such as RNN and LSTM. This work aims to evaluate these model's performance to choose the robust model in identifying the significant factors influencing the prediction. During this research, it was expected that Deep Leaming would be applied to get the desired results or achieve better accuracy than the state-of-the-art. The models are compared to check their outputs to know which one has performed better.


翻译:投资者根据基本分析、技术分析和定量分析等若干因素作出投资决定。投资者作出投资决定的另一个因素是本研究的唯一目的,即通过对新闻标题的情绪分析作出投资决定。自然语言处理技术通常用于处理如此大量的数据和从中获取有价值的信息。NLP算法将原始文字转换成数字表示,机器可以很容易地理解和解释。这种转换可以使用各种嵌入技术进行。在这项研究中,所采用的嵌入技术是BoW、TF-IDF、Word2Vec、BERT、GloVe和FastText,然后被反馈到诸如RNN和LSTM等深层学习模型。这项工作旨在评估这些模型的性能,以选择影响预测的重要因素。在这次研究中,预计深激光应用来取得预期的结果或取得比最新技术更准确的准确性。这些模型比较了它们的输出结果,以了解谁的表现更好。

0
下载
关闭预览

相关内容

零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
专知会员服务
116+阅读 · 2019年12月24日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
10+阅读 · 2021年11月10日
Compression of Deep Learning Models for Text: A Survey
Financial Time Series Representation Learning
Arxiv
10+阅读 · 2020年3月27日
Arxiv
15+阅读 · 2020年2月6日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员