The multi-type Moran process is an evolutionary process on a connected graph $G$ in which each vertex has one of $k$ types and, in each step, a vertex $v$ is chosen to reproduce its type to one of its neighbours. The probability of a vertex $v$ being chosen for reproduction is proportional to the fitness of the type of $v$. So far, the literature was almost solely concerned with the $2$-type Moran process in which each vertex is either healthy (type $0$) or a mutant (type $1$), and the main problem of interest has been the (approximate) computation of the so-called fixation probability, i.e., the probability that eventually all vertices are mutants. In this work we initiate the study of approximating fixation probabilities in the multi-type Moran process on general graphs. Our main result is an FPTRAS (fixed-parameter tractable randomised approximation scheme) for computing the fixation probability of the dominant mutation; the parameter is the number of types and their fitnesses. In the course of our studies we also provide novel upper bounds on the expected absorption time, i.e., the time that it takes the multi-type Moran process to reach a state in which each vertex has the same type.
翻译:多重型摩南进程是一个进化过程, 在一个连接的图形 $G$ 上, 每个顶端都有1美元的类型, 在每步中, 选择一个顶点 $v$ 来复制它的类型。 选择一个顶点 $v$ 的概率与美元类型是否合适成正比。 到目前为止, 文献几乎完全只关注 $2 类摩南 过程, 每一个顶点要么健康( 0. 美元 ) 要么变异( $ ), 要么 主要的利息问题是 所谓的固定概率的( 近似) 计算, 也就是说, 最终所有顶点都是变异体的概率。 在这个工作中, 我们开始研究多型摩南进程 的相似性 。 我们的主要结果是 计算主要突变的固定概率( 固定参数 $0 ) 或 变异异体 ( $ 美元 ), 主要问题是 ( 类型 近似 ), 即 计算 所谓的 固定概率, 即 最终 所有顶点 的 概率 的 概率 概率 概率 。 。 在每 上 类型 中, 我们的 直径 的 将 进行 的 的 。</s>