The purpose of this paper is to design a solution to the problem of facial recognition by use of convolutional neural networks, with the intention of applying the solution in a camera-based home-entry access control system. More specifically, the paper focuses on solving the supervised classification problem of taking images of people as input and classifying the person in the image as one of the authors or not. Two approaches are proposed: (1) building and training a neural network called WoodNet from scratch and (2) leveraging transfer learning by utilizing a network pre-trained on the ImageNet database and adapting it to this project's data and classes. In order to train the models to recognize the authors, a dataset containing more than 150 000 images has been created, balanced over the authors and others. Image extraction from videos and image augmentation techniques were instrumental for dataset creation. The results are two models classifying the individuals in the dataset with high accuracy, achieving over 99% accuracy on held-out test data. The pre-trained model fitted significantly faster than WoodNet, and seems to generalize better. However, these results come with a few caveats. Because of the way the dataset was compiled, as well as the high accuracy, one has reason to believe the models over-fitted to the data to some degree. An added consequence of the data compilation method is that the test dataset may not be sufficiently different from the training data, limiting its ability to validate generalization of the models. However, utilizing the models in a web-cam based system, classifying faces in real-time, shows promising results and indicates that the models generalized fairly well for at least some of the classes (see the accompanying video).


翻译:本文的目的是设计一个解决方案,解决通过使用进化神经网络进行面部识别的问题,目的是在基于摄像头的家庭进入访问控制系统中应用该解决方案。更具体地说,本文件侧重于解决将人图像作为输入输入的监管分类问题,并将图像中的人分类为作者之一或非作者。提出了两种方法:(1) 建立和培训神经网络,称为WoodNet从零开始,(2) 利用在图像网络数据库上经过预先训练的网络来利用转移学习,使之适应该项目的数据和课程。为了培训模型来识别作者,已经创建了一个包含超过15万张图像的数据集,平衡了作者和其他人。从视频和图像增强技术中提取图像用于创建数据集。结果分为两个模型,将数据集中的个人分类精度高,在搁置测试数据数据中达到99%的准确度以上。预先训练模型比WoodNet数据库要快得多,而且似乎要更加概括化。这些模型的特点是有一些最不精确的缩略图。但是,这些结果与一些预设模型相比,这些模型是最小的缩图。由于数据系统的精细化方法的精度,因此,从数据库的精细化到数据的精细度,因此,数据的精细度可能超越了数据的精度,因此使得数据推到数据排序,因此使数据推到数据的精度为高的精度。

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
CoCoNet: A Collaborative Convolutional Network
Arxiv
6+阅读 · 2019年1月28日
VIP会员
相关资讯
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Top
微信扫码咨询专知VIP会员