Error correction techniques traditionally focus on the co-design of restricted code-structures in tandem with code-specific decoders that are computationally efficient when decoding long codes in hardware. Modern applications are, however, driving demand for ultra-reliable low-latency communications (URLLC), rekindling interest in the performance of shorter, higher-rate error correcting codes, and raising the possibility of revisiting universal, code-agnostic decoders. To that end, here we introduce a soft-detection variant of Guessing Random Additive Noise Decoding (GRAND) called Ordered Reliability Bits GRAND that can accurately decode any moderate redundancy block-code. It is designed with efficient circuit implementation in mind, and determines accurate decodings while retaining the original hard detection GRAND algorithm's suitability for a highly parallelized implementation in hardware. ORBGRAND is shown to provide excellent soft decision block error performance for codes of distinct classes (BCH, CA-Polar and RLC) with modest complexity, while providing better block error rate performance than CA-SCL, a state of the art soft detection CA-Polar decoder. ORBGRAND offers the possibility of an accurate, energy efficient soft detection decoder suitable for delivering URLLC in a single hardware realization.


翻译:错误校正技术传统上侧重于与编码专用解码器一道共同设计限制代码结构,这些解码器在解码硬件长代码时具有计算效率。然而,现代应用是驱动对超可信任低频通信(URLLC)的需求,重新激发人们对执行更短、更高率错误校正代码的兴趣,以及提高重新审视通用、代数解码解码器的可能性。为此,我们引入了一个软检测软件变式的“猜测随机添加噪音解码器(GRAND)”,称为“定序 Reflity Bits Grand”,可以准确解码任何中度冗余区代码。它的设计要以高效的电路执行为目的,确定准确的解码,同时保留原硬检测GRAND算法对硬件高度平行执行的适宜性。 ORBGRAAND显示,为不同类别代码(BCH、CA-POL和RLC)提供极复杂的软误率差率表现,同时提供比CASC-SCL更好的差率性差率性工作,这是软性检测CA-POLC 交付一个稳定的软性硬体硬体硬体硬体硬体硬体硬体硬体实现。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
专知会员服务
60+阅读 · 2020年3月19日
专知会员服务
159+阅读 · 2020年1月16日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年10月17日
Transformers in Remote Sensing: A Survey
Arxiv
25+阅读 · 2022年9月2日
Arxiv
11+阅读 · 2020年12月2日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员