When analyzing large datasets, it is common to select a model prior to making inferences. For reliable inferences, it is important to make adjustments that account for the model selection process, resulting in selective inferences. Our paper introduces an asymptotic pivot to infer about the effects of selected variables on conditional quantile functions. Utilizing estimators from smoothed quantile regression, our proposed pivot is easy to compute and ensures asymptotically-exact selective inferences without making strict distributional assumptions about the response variable. At the core of the pivot is the use of external randomization, which enables us to utilize the full sample for both selection and inference without the need to partition the data into independent data subsets or discard data at either step. On simulated data, we find that: (i) the asymptotic confidence intervals based on our pivot achieve the desired coverage rates, even in cases where sample splitting fails due to insufficient sample size for inference; (ii) our intervals are consistently shorter than those produced by sample splitting across various models and signal settings. We report similar findings when we apply our approach to study risk factors for low birth weights in a publicly accessible dataset of US birth records from 2022.
翻译:暂无翻译