3D image scans are an assessment tool for neurological damage in Parkinson's disease (PD) patients. This diagnosis process can be automatized to help medical staff through Decision Support Systems (DSSs), and Convolutional Neural Networks (CNNs) are good candidates, because they are effective when applied to spatial data. This paper proposes a 3D CNN ordinal model for assessing the level or neurological damage in PD patients. Given that CNNs need large datasets to achieve acceptable performance, a data augmentation method is adapted to work with spatial data. We consider the Ordinal Graph-based Oversampling via Shortest Paths (OGO-SP) method, which applies a gamma probability distribution for inter-class data generation. A modification of OGO-SP is proposed, the OGO-SP-$\beta$ algorithm, which applies the beta distribution for generating synthetic samples in the inter-class region, a better suited distribution when compared to gamma. The evaluation of the different methods is based on a novel 3D image dataset provided by the Hospital Universitario 'Reina Sof\'ia' (C\'ordoba, Spain). We show how the ordinal methodology improves the performance with respect to the nominal one, and how OGO-SP-$\beta$ yields better performance than OGO-SP.


翻译:3D 图像扫描是帕金森病(PD)患者神经损伤的评估工具。 这个诊断过程可以自动化,通过决策支持系统帮助医务人员,而进化神经网络(CNNs)是良好的候选人,因为它们在应用到空间数据时是有效的。 本文提出了用于评估PD病人水平或神经损伤的3D CNN 常规模型。 鉴于有线电视新闻网需要大型数据集才能达到可接受的性能,数据增强方法将适应于空间数据。 我们认为,基于Ordinal图表的透视方法通过最短路径(OGO-SP)帮助医务人员。 提议对OGO- SP进行修改,OGO-SP-$\beta 算法将乙型分布用于在跨阶层地区生成合成样本,比伽马还要更适合的分布。 不同方法的评估依据的是医院大学“Reina-Sof\\ SP ” (OGO-GO-SA) 提供的新3D 图像数据集, 即OF-SPA-SO-SA 的性能表现方法如何更好。

0
下载
关闭预览

相关内容

专知会员服务
39+阅读 · 2020年9月6日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员