An emerging optimisation problem from the real-world applications, named the multi-point dynamic aggregation (MPDA) problem, has become one of the active research topics of the multi-robot system. This paper focuses on a multi-objective MPDA problem which is to design an execution plan of the robots to minimise the number of robots and the maximal completion time of all the tasks. The strongly-coupled relationships among robots and tasks, the redundancy of the MPDA encoding, and the variable-size decision space of the MO-MPDA problem posed extra challenges for addressing the problem effectively. To address the above issues, we develop a hybrid decomposition-based multi-objective evolutionary algorithm (HDMOEA) using $ \varepsilon $-constraint method. It selects the maximal completion time of all tasks as the main objective, and converted the other objective into constraints. HDMOEA decomposes a MO-MPDA problem into a series of scalar constrained optimization subproblems by assigning each subproblem with an upper bound robot number. All the subproblems are optimized simultaneously with the transferring knowledge from other subproblems. Besides, we develop a hybrid population initialisation mechanism to enhance the quality of initial solutions, and a reproduction mechanism to transmit effective information and tackle the encoding redundancy. Experimental results show that the proposed HDMOEA method significantly outperforms the state-of-the-art methods in terms of several most-used metrics.


翻译:实际应用中正在出现的优化问题,称为多点动态聚合(MPDA)问题,已成为多机器人系统的积极研究课题之一。本文件侧重于多目标的多目标多数据共享问题,即设计机器人执行计划,以最大限度地减少机器人的数量和所有任务的最大完成时间。机器人和任务之间紧密结合的关系,MPDA编码的冗余,以及MO-MPDA问题的可变决定空间,为有效解决这一问题带来了额外的挑战。为了解决上述问题,我们开发了一个基于混合的多目标进化算法(HDMOEA),使用$\varepsilon $-constrain 方法。它选择了所有任务的最大完成时间作为主要目标,并将其他目标转化为制约。HDMOEA将MODA问题解压缩成一系列微缩优化优化优化子问题,将每个子问题与一个上装的机器人编号放在一起。所有子质异位的多目标化多目标化多目标演算法(HDMMOEA)使用混合的混合混合组合组合组合,同时将数据化的初始化方法升级,将数据转换为RiPRODMLA的模型。

0
下载
关闭预览

相关内容

专知会员服务
84+阅读 · 2020年12月5日
【2020新书】概率机器学习,附212页pdf与slides
专知会员服务
108+阅读 · 2020年11月12日
【Google-CMU】元伪标签的元学习,Meta Pseudo Labels
专知会员服务
31+阅读 · 2020年3月30日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
已删除
将门创投
4+阅读 · 2018年6月1日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
Arxiv
0+阅读 · 2021年6月29日
VIP会员
相关资讯
Top
微信扫码咨询专知VIP会员