Data centers are critical to the commercial and social activities of modern society but are also major electricity consumers. To minimize their environmental impact, it is imperative to make data centers more energy efficient while maintaining a high quality of service (QoS). Bearing this consideration in mind, we develop an analytical model using queueing theory for evaluating the QoS of a data center. Furthermore, based on this model, we develop a domain-specific evolutionary optimization framework featuring a tailored solution representation and a constraint-aware initialization operator for finding the optimal placement of virtual network functions in a data center that optimizes multiple conflicting objectives with regard to energy consumption and QoS. In particular, our framework is applicable to any existing evolutionary multi-objective optimization algorithm in a plug-in manner. Extensive experiments validate the efficiency and accuracy of our QoS model as well as the effectiveness of our tailored algorithms for virtual network function placement problems at various scales.


翻译:数据中心对于现代社会的商业和社会活动至关重要,但也是重要的电力消费者。为了最大限度地减少对环境的影响,必须提高数据中心的能效,同时保持高质量的服务(Qos)。考虑到这一考虑,我们开发了一个分析模型,使用排队理论来评价数据中心的QOS。此外,基于这一模型,我们开发了一个针对特定领域的演化优化框架,其中包含一个量身定制的解决方案代表和一个有限制的初始化操作器,以找到将虚拟网络功能最佳地安置在一个数据中心,从而优化能源消费和Qos方面的多重相互矛盾的目标。特别是,我们的框架适用于任何现有的演进多目标优化算法,以插插座方式。广泛的实验验证了我们的Qos模型的效率和准确性,以及我们针对虚拟网络功能在不同规模的定位问题的定制算法的有效性。

0
下载
关闭预览

相关内容

【陈天奇】TVM:端到端自动深度学习编译器,244页ppt
专知会员服务
87+阅读 · 2020年5月11日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
Arxiv
32+阅读 · 2021年3月8日
Viewpoint Estimation-Insights & Model
Arxiv
3+阅读 · 2018年7月3日
VIP会员
相关VIP内容
【陈天奇】TVM:端到端自动深度学习编译器,244页ppt
专知会员服务
87+阅读 · 2020年5月11日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
Top
微信扫码咨询专知VIP会员