We study a stochastic first order primal-dual method for solving convex-concave saddle point problems over real reflexive Banach spaces using Bregman divergences and relative smoothness assumptions, in which we allow for stochastic error in the computation of gradient terms within the algorithm. We show ergodic convergence in expectation of the Lagrangian optimality gap with a rate of O(1/k) and that every almost sure weak cluster point of the ergodic sequence is a saddle point in expectation under mild assumptions. Under slightly stricter assumptions, we show almost sure weak convergence of the pointwise iterates to a saddle point. Under a relative strong convexity assumption on the objective functions and a total convexity assumption on the entropies of the Bregman divergences, we establish almost sure strong convergence of the pointwise iterates to a saddle point. Our framework is general and does not need strong convexity of the entropies inducing the Bregman divergences in the algorithm. Numerical applications are considered including entropically regularized Wasserstein barycenter problems and regularized inverse problems on the simplex.
翻译:我们用布雷格曼差异和相对顺畅的假设来研究解决真实的反射型香蕉空间的共聚凝凝凝凝结质问题的第一序初等双向马鞍问题,在这种假设中,我们允许计算算法中的梯度值出现随机错差。我们展示了期待拉格朗格亚最佳差与O(1/k)的速率的垂直趋同性趋同性。我们的框架很笼统,不需要在轻度假设下产生强烈的交错性。在略为严格的假设下,我们几乎可以确定点偏差与马鞍点的趋同性差。在对目标函数和布雷格曼差的共性假设中,相对强烈的对准性假设和对布雷格曼差的共性假设下,我们几乎可以肯定地确定点偏差与马鞍点的高度趋同性差。我们的框架很笼统,不需要导致布列格曼在算法中出现差异的强烈的同质性差点。在数值应用中考虑包括简单固定的瓦塞斯坦的常规问题和常规问题。