Microorganisms play a critical role in host health. The advancement of high-throughput sequencing technology provides opportunities for a deeper understanding of microbial interactions. However, due to the limitations of 16S ribosomal RNA sequencing, microbiome data are zero-inflated, and a quantitative comparison of microbial abundances cannot be made across subjects. By leveraging a recent microbiome profiling technique that quantifies 16S ribosomal RNA microbial counts, we propose a novel Bayesian graphical model that incorporates microorganisms' evolutionary history through a phylogenetic tree prior and explicitly accounts for zero-inflation using the truncated Gaussian copula. Our simulation study reveals that the evolutionary information substantially improves the network estimation accuracy. We apply the proposed model to the quantitative gut microbiome data of 106 healthy subjects, and identify three distinct microbial communities that are not determined by existing microbial network estimation models. We further find that these communities are discriminated based on microorganisms' ability to utilize oxygen as an energy source.
翻译:高通量测序技术的进步为更深入了解微生物相互作用提供了机会。然而,由于16S核子RNA测序的局限性,微生物数据是零充气的,无法对各个学科的微生物丰度进行定量比较。通过利用最近对16S核子RNA微生物计数进行量化的微生物特征分析技术,我们提出了一个新颖的Bayesian图形模型,将微生物的进化史通过植物基因树预先和明确地说明使用疏漏的高斯阳极的零膨胀情况。我们的模拟研究表明,进化信息大大改进了网络估计的准确性。我们对106个健康学科的定量直径微生物数据应用了拟议的模型,并确定了现有的微生物网络估计模型没有确定的三个不同的微生物群落。我们进一步发现,这些群落因微生物利用氧作为能源源的能力而受到歧视。