We present a dynamic algorithm for maintaining the connected and 2-edge-connected components in an undirected graph subject to edge deletions. The algorithm is Monte-Carlo randomized and processes any sequence of edge deletions in $O(m + n \operatorname{polylog} n)$ total time. Interspersed with the deletions, it can answer queries to whether any two given vertices currently belong to the same (2-edge-)connected component in constant time. Our result is based on a general Monte-Carlo randomized reduction from decremental $c$-edge-connectivity to a variant of fully-dynamic $c$-edge-connectivity on a sparse graph. For non-sparse graphs with $\Omega(n \operatorname{polylog} n)$ edges, our connectivity and $2$-edge-connectivity algorithms handle all deletions in optimal linear total time, using existing algorithms for the respective fully-dynamic problems. This improves upon an $O(m \log (n^2 / m) + n \operatorname{polylog} n)$-time algorithm of Thorup [J.Alg. 1999], which runs in linear time only for graphs with $\Omega(n^2)$ edges. Our constant amortized cost for edge deletions in decremental connectivity in non-sparse graphs should be contrasted with an $\Omega(\log n/\log\log n)$ worst-case time lower bound in the decremental setting [Alstrup, Thore Husfeldt, FOCS'98] as well as an $\Omega(\log n)$ amortized time lower-bound in the fully-dynamic setting [Patrascu and Demaine STOC'04].


翻译:我们提出了一个动态算法, 用于维持连接的和2- 连接的组件。 算法是 Monte- Carlo 随机的, 处理以$O( m) + n\ operatorname{polylog} n) 总时值表示的任何边缘删除序列。 在删除中, 它可以解答任何两个给定的顶点是否在固定时间属于同一个连接的组件。 我们的结果基于一个通俗的 Monte- Carlo 随机的削减, 从 deremental $0- edge- 连通性到在稀薄的图上完全动态的 $( m) $( m) $( 美元) 美元- clocal- lidge- 连通性变异性变异性。 对于有 $\ omerga (n) 美元( = 美元) 的 Om- liveralalalalizeralal 时间设置所有最优的线性算算法, 在1999年的 美元( m) 美元( m) 美元( 美元) 美元( 美元) 美元) 内, 美元( 美元) 美元( 美元) 美元) 以内, 美元) 美元(n- 美元) 美元) 美元( 美元) 美元) 的内, 美元( 美元) 美元( 美元) 美元( 美元) 美元) 美元( 美元) 美元) 美元( 美元( 美元) 美元) 美元) 以内算算算算算算算算算算算算的不 的不 的不更低)

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【2020新书】概率机器学习,附212页pdf与slides
专知会员服务
108+阅读 · 2020年11月12日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员