Recently, random walks on dynamic graphs have been studied because of its adaptivity to dynamical settings including real network analysis. However, previous works showed a tremendous gap between static and dynamic networks for the cover time of a lazy simple random walk: Although $O(n^3)$ cover time was shown for any static graphs of $n$ vertices, there is an edge-changing dynamic graph with an exponential cover time. We study a lazy Metropolis walk of Nonaka, Ono, Sadakane, and Yamashita (2010), which is a weighted random walk using local degree information. We show that this walk is robust to an edge-changing in dynamic networks: For any connected edge-changing graphs of $n$ vertices, the lazy Metropolis walk has the $O(n^2)$ hitting time, the $O(n^2\log n)$ cover time, and the $O(n^2)$ coalescing time, while those times can be exponential for lazy simple random walks. All of these bounds are tight up to a constant factor. At the heart of the proof, we give upper bounds of those times for any reversible random walks with a time-homogeneous stationary distribution.
翻译:最近,对动态图上的随机行走进行了研究,因为动态图与动态设置相适应,包括真实的网络分析。然而,先前的工程显示,静态和动态网络之间在懒惰的简单随机行走的覆盖时间存在巨大差距:尽管为任何静态图显示的顶点值为$(n)3美元,但为任何静态图显示的顶点值为$(n)3美元,但有一个具有指数覆盖时间的边缘变化动态图。我们研究的是Annaka、Ono、Sadakane和Yamashita(2010年)的懒惰大都会行道,这是一个使用本地度信息的加权随机行走。我们显示,这种行道对于动态网络的边缘变化是强大的:对于任何连接的顶点值值为$(n)2美元的边缘变化图而言,懒惰大都市行走的覆盖时间为$(n)美元(n)2美元,覆盖时间为$(n)美元),而煤炭时间为$O(n),而那些时间对于懒懒散的随机行来说可能是指数。所有这些界限都与固定在恒点。所有这些界限内,所有这些界限都与固定要素。在证据的核心上,我们随机进行这些时间的分布。