Finding exact circuit size is a notorious optimization problem in practice. Whereas modern computers and algorithmic techniques allow to find a circuit of size seven in blink of an eye, it may take more than a week to search for a circuit of size thirteen. One of the reasons of this behavior is that the search space is enormous: the number of circuits of size $s$ is $s^{\Theta(s)}$, the number of Boolean functions on $n$ variables is $2^{2^n}$. In this paper, we explore the following natural heuristic idea for decreasing the size of a given circuit: go through all its subcircuits of moderate size and check whether any of them can be improved by reducing to SAT. This may be viewed as a local search approach: we search for a smaller circuit in a ball around a given circuit. Through this approach, we prove new upper bounds on the circuit size of various symmetric functions. We also demonstrate that some upper bounds that were proved by hand decades ago, nowadays can be found automatically in a few seconds.
翻译:查找准确的电路大小是实践上一个臭名昭著的优化问题。 现代计算机和算法技术允许在眨眼时找到7号的电路, 搜索13号电路可能需要一周以上的时间。 这种行为的原因之一是搜索空间巨大: 美元大小的电路数量为$s ⁇ theta $, 美元变量上的布林函数数量为$2 ⁇ 2 ⁇ n $。 在本文中, 我们探索了减少特定电路大小的自然超常理论: 检查其所有中等大小的子电路是否可以通过缩小到 SAT 来改进。 这可以被看作是一种本地搜索方法: 我们在一个特定电路周围的球里搜索一个较小的电路。 通过这个方法, 我们证明在各种对称功能的电路大小上有新的上界。 我们还证明, 几十年前手法证明的一些上界可以自动在几秒内找到。