In computed tomography, data consist of measurements of the attenuation of X-rays passing through an object. The goal is to reconstruct the linear attenuation coefficient of the object's interior. For each position of the X-ray source, characterized by its angle with respect to a fixed coordinate system, one measures a set of data referred to as a view. A common assumption is that these view angles are known, but in some applications they are known with imprecision. We propose a framework to solve a Bayesian inverse problem that jointly estimates the view angles and an image of the object's attenuation coefficient. We also include a few hyperparameters that characterize the likelihood and the priors. Our approach is based on a Gibbs sampler where the associated conditional densities are simulated using different sampling schemes - hence the term hybrid. In particular, the conditional distribution associated with the reconstruction is nonlinear in the image pixels, non-Gaussian and high-dimensional. We approach this distribution by constructing a Laplace approximation that represents the target conditional locally at each Gibbs iteration. This enables sampling of the attenuation coefficients in an efficient manner using iterative reconstruction algorithms. The numerical results show that our algorithm is able to jointly identify the image and the view angles, while also providing uncertainty estimates of both. We demonstrate our method with 2D X-ray computed tomography problems using fan beam configurations.
翻译:计算成透析时, 数据包括测量X射线通过对象的衰减度。 目标是重建对象内部的线性衰减系数。 对于X射线源的每个位置, 其特点是固定坐标系统的角度, 一种测量一套称为视图的数据集。 一个常见的假设是, 这些视图角度是已知的, 但在某些应用中, 它们不精确地为人所知。 我们提出一个解决巴耶斯反向问题的框架, 以共同估计对象内部的视图角度和图像。 我们还包括几个显示可能性和前部特征的超参数。 我们的方法基于一个 Gibs 取样器, 其中相关的条件密度是使用不同的取样方法模拟的, 也就是使用混合的术语。 特别是, 与重建有关的条件分布在图像平面、 非加西西语和高维度中是非线性。 我们处理这种分布的方法是建造一个拉比近度的近度, 代表每个近度目标的降低系数 。 我们的方法是用一个高效的甚低比方位算算法 来显示我们的数字变色的图像 。 这样就能用数字的算法来显示我们的数字变压的方法 。 。 能够在数字变压中进行 的算法的取样中进行 。 以显示我们的数字分析, 以 以 以 比较法 以 以 以 比较法 比较法 以 以 以 比较法 表示 以 表示 表示 表示 的 的 的 的 的 的 。