Chemical reactivity models are developed to predict chemical reaction outcomes in the form of classification (success/failure) or regression (product yield) tasks. The vast majority of the reported models are trained solely on chemical information such as reactants, products, reagents, and solvents, but not on the details of a synthetic protocol. Herein incorporation of procedural text with the aim to augment the Graphormer reactivity model and improve its accuracy is presented. Two major approaches are used: training an adapter Graphormer model that is provided with a GPT-2-derived latent representation of the text procedure (ReacLLaMA-Adapter) and labeling an unlabeled part of a dataset with the LLaMA 2 model followed by training the Graphormer on an extended dataset (Zero-Shot Labeling ReacLLaMA). Both methodologies enhance the discernment of unpromising reactions, thereby providing more accurate models with improved specificity.
翻译:暂无翻译